Юридические документы

Как сделать сглаживание графика в excel. Методика сглаживания графиков

Абсолютные и относительные ошибки

Такие ошибки, как средняя (J), средняя квадратическая (m ), вероятная (r ), истинная (D) и предельная (D пр ), являются абсолютными ошибками. Они всегда выражены в единицах измеряемой величины, т.е. имеют одинаковую с измеряемой величиной размерность.
Часто возникают случаи, когда разные по величине объекты измеряют с одинаковыми абсолютными ошибками. Например, средняя квадратическая ошибка измерения линий длиной: l 1 = 100 м и l 2 = 1000 м, составила m = 5 см. Возникает вопрос: какая же линия измерялась точнее? Чтобы избежать неопределенности, точность измерений ряда величин оценивают в виде отношения абсолютной ошибки к значению измеряемой величины. Полученное отношение называется относительной ошибкой, которую обычно выражают дробью с числителем, равным единице.
Наименование абсолютной ошибки определяет и название соответствующей ей относительной ошибки измерения [ 1 ].

Пусть x - результат измерения некоторой величины. Тогда
- cредняя квадратическая относительная ошибка;

Средняя относительная ошибка;

Вероятная относительная ошибка;

Истинная относительная ошибка;

Предельная относительная ошибка.

Знаменатель N относительной ошибки необходимо округлять до двух значащих цифр с нулями:

m x = 0,3 м; x = 152,0 м;

m x = 0,25 м; x = 643,00 м; .

m x = 0,033 м; x = 795,000 м;

Как видно из примера, чем больше знаменатель дроби, тем точнее выполнены измерения.

Ошибки округления

При обработке результатов измерений немаловажную роль играют ошибки округления, которые по своим свойствам можно отнести к случайным величинам [ 2 ]:

1) предельная ошибка одного округления составляет 0,5 единицы удерживаемого знака;

2) большие и меньшие по абсолютной величине ошибки округления равновозможны;
3) положительные и отрицательные ошибки округления равновозможны;
4) математическое ожидание ошибок округления равно нулю.
Эти свойства позволяют отнести ошибки округления к случайным величинам, имеющим равномерное распределение. Непрерывная случайная величина X имеет равномерное распределение на интервале [a, b ], если на этом интервале плотность распределения случайной величины постоянна, а вне его равна нулю (рис. 2), т.е.

j (x ) . (1.32)

Функция распределения F (x )

a b x (1.33)

Рис. 2 Математическое ожидание

(1.34)

Дисперсия
(1.35)

Среднее квадратическое отклонение

(1.36)

Для ошибок округления

Cтраница 1


Абсолютная ошибка определения не превышает 0 01 мкг фосфора. Этот метод был применен нами для определения фосфора в азотной, уксусной, соляной и серной кислотах и ацетоне с предварительным выпариванием их.  

Абсолютная ошибка определения составляет 0 2 - 0 3 мг.  

Абсолютная ошибка определения цинка в цинк-марганцевых ферритах предложенным методом не превышает 0 2 % отн.  

Абсолютная ошибка определения углеводородов С2 - С4, при содержании их в газе 0 2 - 5 0 %, составляет 0 01 - 0 2 % соответственно.  

Здесь Ау - - абсолютная ошибка определения г /, которая получается в результате ошибки Да в определении а. Например, относительная ошибка квадрата числа в два раза больше ошибки определения самого числа, а относительная ошибка числа, стоящего под кубическим корнем, составляет просто одну треть от ошибки определения числа.  

Более сложные соображения необходимы при выборе меры сравнений абсолютных ошибок определения времени начала аварии TV - Ts, где Tv и Ts - соответственно время восстановленной и реальной аварии. По аналогии здесь может использоваться среднее время добега-ния пика загрязнений от реального сброса до тех точек мониторинга, которые фиксировали аварию за время прохождения загрязнений Tsm. Вычисление достоверности определения мощности аварий основано на расчете относительной ошибки MV - Ms / Мв, где Mv и Ms - соответственно восстановленная и реальная мощности. Наконец, относительная ошибка определения продолжительности аварийного выброса характеризуется величиной rv - rs / re, где rv и rs - соответственно восстановленная и реальная продолжительности аварий.  

Более сложные соображения необходимы при выборе меры сравнений абсолютных ошибок определения времени начала аварии TV - Ts, где Tv и Ts - соответственно время восстановленной и реальной аварии. По аналогии здесь может использоваться среднее время добега-ния пика загрязнений от реального сброса до тех точек мониторинга, которые фиксировали аварию за время прохождения загрязнений Tsm. Вычисление достоверности определения мощности аварий основано на расчете относительной ошибки Mv - Ms / Ms, где Mv и Ms - соответственно восстановленная и реальная мощности. Наконец, относительная ошибка определения продолжительности аварийного выброса характеризуется величиной rv - rs / rs, где rv и rs - соответственно восстановленная и реальная продолжительности аварий.  

При одной и той же абсолютной ошибке измерения ау абсолютная ошибка определения количества ах уменьшается с увеличением чувствительности метода.  

Поскольку в основе ошибок лежат не случайные, а систематические погрешности, итоговая абсолютная ошибка определения присосов может достигать 10 % теоретически необходимого количества воздуха. Только при недопустимо неплотных топках (А а0 25) общепринятый метод дает более или менее удовлетворительные результаты. Описанное хорошо известно наладчикам, которые при сведении воздушного баланса плотных топок нередко получают отрицательные значения присосов.  

Анализ погрешности определения величины пэт показал, что она складывается из 4 составляющих: абсолютной ошибки определения массы матрицы, емкости образца, взвешивания, относительной ошибки за счет флуктуации массы образца около равновесного значения.  

При соблюдении всех правил отбора, отсчета объемов и анализа газов при помощи газоанализатора ГХП-3 общая абсолютная ошибка определения содержания С02 и О2 не должна превышать 0 2 - 0 4 % истинной их величины.  

Из табл. 1 - 3 можно сделать заключение, что используемые нами данные для исходных веществ, взятые из разных источников, имеют сравнительно небольшие различия, которые лежат в пределах абсолютных ошибок определения этих величин.  

Случайные ошибки могут быть абсолютными и относительными. Случайную ошибку, имеющую размерность измеряемой величины, называют абсолютной ошибкой определения. Среднее арифметическое значение абсолютных ошибок всех отдельных измерений называют абсолютной ошибкой метода анализа.  

Величина допустимого отклонения, или доверительный интервал, устанавливается не произвольно, а вычисляется из конкретных данных измерений и характеристик используемых приборов. Отклонение результата отдельного измерения от истинного значения величины называется абсолютной ошибкой определения или просто ошибкой. Отношение абсолютной ошибки к измеряемой величине называется относительной ошибкой, которую обычно выражают в процентах. Знание ошибки отдельного измерения не имеет самостоятельного значения, и во всяком серьезно поставленном эксперименте должно проводиться несколько параллельных измерений, по которым и вычисляют ошибку эксперимента. Ошибки измерений в зависимости от причин их возникновения делятся на три вида.  

Ошибка измерения

Погре́шность измере́ния - оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

  • Приведенная погрешность - относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где X n - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то X n определяется равным верхнему пределу измерений;
- если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность - безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность - погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность - погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений - погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F (x 1 ,x 2 ...x n ) , где x i - непосредственно измеряемые независимые величины, имеющие погрешность Δx i , тогда:

См. также

  • Измерение физических величин
  • Система автоматизированного сбора данных со счетчиков по радиоканалу

Литература

  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. - М.: Наука. Главная редакция физико-математичекой литературы, 1983. - 704 с.

Wikimedia Foundation . 2010 .

ошибка измерения времени - laiko matavimo paklaida statusas T sritis automatika atitikmenys: angl. time measuring error vok. Zeitmeßfehler, m rus. ошибка измерения времени, f pranc. erreur de mesure de temps, f … Automatikos terminų žodynas

систематическая ошибка (измерения) - вносить систематическую ошибку — Тематики нефтегазовая промышленность Синонимы вносить систематическую ошибку EN bias …

СТАНДАРТНАЯ ОШИБКА ИЗМЕРЕНИЯ - Оценка степени, в которой можно ожидать, что определенный набор измерений, полученных в данной ситуации (например, в тесте или в одной из нескольких параллельных форм теста), будет отклоняться от истинных значений. Обозначается как а (М) …

ошибка наложения - Вызывается наложением кратковременных выходных импульсов ответных сигналов, когда временной интервал между импульсами входного тока меньше, чем продолжительность отдельного выходного импульса ответного сигнала. Ошибки наложения могут быть… … Справочник технического переводчика

ошибка - 01.02.47 ошибка (цифровые данные) (1)4): Результат сбора, хранения, обработки и передачи данных, при котором бит или биты принимают несоответствующие значения, либо в потоке данных недостает битов. 4)Терминологические… … Словарь-справочник терминов нормативно-технической документации

Движенья нет, сказал мудрец брадатый. Другой смолчал и стал пред ним ходить. Сильнее бы не мог он возразить; Хвалили все ответ замысловатый. Но, господа, забавный случай сей Другой пример на память мне приводит: Ведь каждый день … Википедия

ОШИБКА ВАРИАНСЫ - Размер вариансы, который не может быть объяснен контролируемыми факторами. Ошибка вариансы нивелируется ошибками отбора образцов, ошибками измерения, экспериментальными ошибками и т.д … Толковый словарь по психологии

Ошибки измерений классифицируют по следующим видам:

Абсолютные и относительные.

Положительные и отрицательные.

Постоянные и пропорциональные.

Грубые, случайные и систематические.

Абсолютная ошибка единичного результата измерения (А­ y ) определяется как разность следующих величин:

А­ y = y i - y ист. » y i -`y .

Относительная ошибка единичного результата измерения (В­ y ) рассчитывается как отношение следующих величин:

Из этой формулы следует, что величина относительной ошибки зависит не только от величины абсолютной ошибки, но и от значения измеряемой величины. При неизменности измеряемой величины (y ) относительную ошибку измерения можно уменьшить только за счет снижения величины абсолютной ошибки (А­ y ). При постоянстве абсолютной ошибки измерения для уменьшения относительной ошибки измерения можно использовать прием увеличения значения измеряемой величины.

Пример. Допустим, что в магазине торговые весы имеют постоянную абсолютную ошибку измерения массы: A m = 10 г. Если Вы взвесите на таких весах 100 г конфет (m 1), то относительная ошибка измерения массы конфет составит:

.

При взвешивании на этих же весах 500 г конфет (m 2) относительная ошибка будет в пять раз меньше:

.

Таким образом, если Вы будете пять раз взвешивать по 100 г конфет, то вы из-за ошибки измерения массы, из 500 г недополучите суммарно 50 г продукта. При однократном взвешивании большей массы (500 г) Вы потеряете только 10 г конфет, т.е. в пять раз меньше.

Учитывая вышесказанное, можно отметить, что в первую очередь необходимо стремиться к уменьшению относительных ошибок измерения. Абсолютные и относительные ошибки можно рассчитать только после определения среднего арифметического значения результата измерения.

Знак ошибки (положительный или отрицательный) определяется разницей между единичным и фактическим результатом измерения:

y i -`y > 0 (ошибка положительная );

y i -`y < 0 (ошибка отрицательная ).

Если абсолютная ошибка измерения не зависит от значения измеряемой величины, то такая ошибка называется постоянной . В противном случае ошибка будет пропорциональной . Характер ошибки измерения (постоянная или пропорциональная) определяется после проведения специальных исследований.

Грубая ошибка измерения (промах) - это значительно отличающийся от других результат измерения, который обычно возникает при нарушении методики измерения. Наличие грубых ошибок измерения в выборке устанавливается только методами математической статистики (при n>2). С методами обнаружения грубых ошибок познакомьтесь самостоятельно в .

Деление ошибок на случайные и систематические достаточно условно.


К случайным ошибкам относят ошибки, которые не имеют постоянной величины и знака. Такие ошибки возникают под действием следующих факторов: неизвестных исследователю; известных, но нерегулируемых; постоянно изменяющихся.

Случайные ошибки можно оценить только после проведения измерений.

Количественной оценкой модуля величины случайной ошибки измерения могут являться следующие параметры: и др.

Случайные ошибки измерения невозможно исключить, их можно только уменьшить. Один из основных способов уменьшения величины случайной ошибки измерения - это увеличение числа единичных измерений (увеличение величины n). Объясняется это тем, что величина случайных ошибок обратно пропорциональна величине n, например:

Систематические ошибки - это ошибки с неизменными величиной и знаком или изменяющиеся по известному закону. Эти ошибки вызываются постоянными факторами. Систематические ошибки можно количественно оценивать, уменьшать и даже исключать.

Систематические ошибки классифицируют на ошибки I, II и III типов.

К систематическим ошибкам I типа относят ошибки известного происхождения, которые могут быть до проведения измерения оценены путем расчета. Эти ошибки можно исключить, вводя их в результат измерения в виде поправок. Примером ошибки такого типа является ошибка при титрометрическом определении объемной концентрации раствора, если титрант был приготовлен при одной температуре, а измерение концентрации проводилось при другой. Зная зависимость плотности титранта от температуры, можно до проведения измерения рассчитать изменение объемной концентрации титранта, связанное с изменением его температуры, и эту разницу учесть в виде поправки в результате измерения.

Систематические ошибки II типа - это ошибки известного происхождения, которые можно оценить только в ходе эксперимента или в результате проведения специальных исследований. К этому типу ошибок относят инструментальные (приборные), реактивные, эталонные и др. ошибки. Познакомьтесь с особенностями таких ошибок самостоятельно в .

Любой прибор при его применении в процедуре измерения вносит в результат измерения свои приборные ошибки. При этом часть этих ошибок случайная, а другая часть - систематическая. Случайные ошибки приборов отдельно не оценивают, их оценивают в общей совокупности со всеми другими случайными ошибками измерения.

Каждый экземпляр любого прибора имеет свою персональную систематическую ошибку. Для того чтобы оценить эту ошибку, необходимо проводить специальные исследования.

Наиболее надежный способ оценки приборной систематической ошибки II типа - это сверка работы приборов по эталонам. Для мерной посуды (пипеток, бюреток, цилиндров и др.) проводят специальную процедуру - калибровку.

На практике наиболее часто требуется не оценить, а уменьшить или исключить систематическую ошибку II типа. Самыми распространенными методами уменьшения систематических ошибок являются методы релятивизации и рандомизации .Познакомьтесь с этими методами самостоятельно в .

К ошибкам III типа относят ошибки неизвестного происхождения. Эти ошибки можно обнаружить только после устранения всех систематических ошибок I и II типов.

К прочим ошибкам отнесем все другие виды ошибок, не рассмотренные выше (допустимые, возможные предельные ошибки и др.). Понятие возможных предельных ошибок применяется в случаях использования средств измерения и предполагает максимально возможную по величине инструментальную ошибку измерения (реальное же значение ошибки может быть меньше величины возможной предельной ошибки).

При использовании средств измерения можно рассчитать возможные предельные абсолютную (П`y ,пр.) или относительную (Е`y ,пр.) погрешности измерения. Так, например, возможная предельная абсолютная погрешность измерения находится как сумма возможных предельных случайных (x ` y , случ., пр.) и неисключенных систематических (d`y , пр.) ошибок:

П`y ,пр.= x ` y , случ., пр. + d`y , пр.

При выборках малого объема (n £ 20) неизвестной генеральной совокупности, подчиняющейся нормальному закону распределения, случайные возможные предельные ошибки измерений можно оценить следующим образом:

x ` y , случ., пр. = D`y = S `y ½t P, n ½,
где t P,n - квантиль распределения (критерий) Стьюдента для вероятности Р и выборки объемом n. Абсолютная возможная предельная погрешность измерения в этом случае будет равна:

П`y ,пр.= S ` y ½t P, n ½+ d ` y , пр.

Если результаты измерений не подчиняются нормальному закону распределения, то оценка погрешностей проводится по другим формулам.

Определение величины d ` y ,пр. зависит от наличия у средства измерения класса точности. Если средство измерения не имеет класса точности, то за величину d ` y ,пр. можно принять минимальную цену деления шкалы средства измерения . Для средства измерения с известным классом точности за величину d ` y ,пр.можно принять абсолютную допустимую систематическую ошибку средства измерения (d y , доп.):

d ` y ,пр.» .

Величина d y , доп. рассчитывается исходя из формул, приведенных в табл.5.

Для многих средств измерения класс точности указывается в виде чисел а×10 n , где а равно 1; 1,5; 2; 2,5; 4; 5; 6 и n равно 1; 0; -1; -2 и т.д., которые показывают величину возможной предельной допускаемой систематической ошибки (Е y , доп.) и специальных знаков, свидетельствующих о ее типе (относительная, приведенная, постоянная, пропорциональная).

Таблица 5

Примеры обозначения классов точности средств измерения

У меня есть некоторые зазубренные контурные сюжеты, которые мне нужно сгладить. Мне нужно сгладить их, не теряя ни одной из линий контура. Я упомянул эти , но они не совсем предлагают решение моей проблемы. Без какого-либо фильтра мои сюжеты выглядят так:

Вы можете видеть, что внешние контуры очень неровные , и поэтому качество презентации не является. Если я запустил данные через гауссовский фильтр порядка 0 и сигма 2 (т.е. scipy.ndimage.gaussian_filter(z, 2)), он сглаживает графики, но я потеряет внутренние контуры :

Каков наилучший способ сглаживания графика без потери внутренних контуров? Характер данных, с которыми я работаю, заключается в том, что он всегда имеет самые высокие значения вблизи центра. Фильтрация расширяет информацию и устраняет внутренние контуры. Это наиболее важные контуры: контуры представляют собой риск гибели людей, поэтому, как правило, чем выше значение, тем важнее оно.

Я рассмотрел два метода сглаживания контурных линий.

  • Получите каждую координату контурной линии через contour_object.collections.get_paths().vertices и сгладьте/перерисуйте каждый. Это кажется возможным, но неэлегантным, и я не уверен, с чего начать.
  • Примените гауссовский фильтр только к данным, превышающим определенное значение: например, 5 * 10 -6 . Это легко сделать (процитировать массив данных и взять из исходного набора, если значение больше, чем обрезание, и отфильтрованный набор, если это не так), но кажется довольно произвольным и трудно оправдавшимся.

Я хотел бы сделать что-то вроде первого варианта, но это похоже на хак. Каков наилучший способ сгладить эти контурные графики?

1 ответ

Сглаживание данных → потеря данных.

Моя первая реакция: почему вы хотите отображать сглаженные данные? Я редко когда-либо видел презентации данных, в которых сглаживание данных было действительно полезно для понимания последствий данных. Фактически, это то, что Туфте часто критиковали (это не повод, чтобы избежать этого, конечно, но, возможно, для того, чтобы попросить себя придумать больше оправдания, чем обычно).

Если сюжет должен выглядеть красиво для некоторых причин, не связанных с данными, это полностью нормально, но если вы пытаетесь сделать его более приятным для глаз, когда задача состоит в том, чтобы понять что-то о природе контуров, вам гораздо лучше просто представить исходные данные, как есть.

Если у вас есть разные контуры, хранящиеся в виде отдельных наборов данных (например, если вы просто украли разные наборы данных сюжетной линии, которые использует контурный плоттер), вы можете применить сглаживание только к тем контурам, где потеря данных от сглаживания и оставлять меньшие внутренние контуры несжимаемыми и зубчатыми.

Или вы можете возиться с параметрами сглаживания, чтобы ваше сглаживающее ядро ​​было достаточно узким, чтобы не полностью убить крошечные внутренние кольца из вашего набора данных.

В принципе, нет никакого способа "сгладить" данные без "потери" данных в некотором смысле, и любой способ сделать это, который не применяется равномерно ко всему набору данных, будет подозрительным.

Добавлено:

Почему бы не сделать фигуру серией из двух сюжетов? Большой сглаженный сюжет, который у вас уже есть (с отсутствием некоторых данных из-за сглаженного дисплея), а затем сюжет в сторону, которая представляет собой только увеличенную версию, содержащую только небольшие очерченные контуры. Это (наряду с соответствующими заголовками и заголовками) привлечет внимание к сглаживанию, так что нет никакого риска, чтобы кто-то не понимал, что сглаженный сюжет - это измененные данные, и позволяет отображать более красивые большие контуры с другой панелью для более уродливого, контуры. Он также добавляет приятное визуальное сочетание сглаженных и необработанных данных, что часто является хорошим эффектом для таких графиков.