Нк рф

К мультипликативной модели можно отнести. Основные приемы детерминированного факторного анализа

Условие: определить влияние численности персонала, количества отработанных смен и выработки в смену на одного работника на изменение объема выпуска продукции (N п).

Сделать вывод.

Алгоритм решения:

    Факторная модель, описывающая взаимосвязь показателей, имеет вид: N = ч * См * В

    Исходные данные – факторы и результирующий показатель представляются в аналитической таблице:

Показатели

Условные обозначения

Базисный период

Отчетный период

Отклонение

Темп изменения, %

1. Численность работников, чел.

2. Количество смен

3. Выработка, штук

4. Выпуск продукции, тыс. шт.

    Способы детерминированного факторного анализа, применяемые для решения трехфакторных моделей:

 цепной подстановки;

 абсолютных разниц;

 взвешенных конечных разниц;

 логарифмический;

 интегральный.

    Применение различных методов для решения типовой задачи:

    1. Способ цепной подстановки. Применение этого способа предполагает выделение количественных и качественных факторных признаков: здесь количественными факторами являются численность персонала и количество отработанных смен; качественный признак – выработка.

а) N 1 = ч 0 * См 0 * В 0 =5184 тыс. шт.;

б) N 2 = ч 1 * См 0 * В 0 =25 * 144 * 1500 =5400 тыс. шт.;

в) N (ч) = 5400 – 5184 = 216 тыс. шт.;

N 3 = ч 1 * См 1 * В 0 =25 * 146 * 1500 =5475 тыс. шт.;

N(См) = 5475 – 5400 = 75 тыс. шт.;

N 4 = ч 1 * См 1 * В 1 =25 * 146 * 1505 =5493,25 тыс. шт.;

N(В) = 5493,25 – 5475 = 18,25 тыс. шт.;

N = N(ч) +N(См) +N (B) = 216 + 75 +18,25 = 309,25 тыс. шт.

4.2 . Способ абсолютных разниц также предполагает выделение количественных и качественных факторов, определяющих последовательность подстановки:

а) N(ч) =ч * См 0 * В 0 = 1 * 14 * 1500 = 216 тыс. шт.;

б) N(См) =См * ч 1 * В 0 = +2 * 25 * 1500 = 75 тыс. шт.;

в) N (B) =B * ч 1 * См 1 = +5 * 25 * 146 = 18,25 тыс. шт.;

N = N(ч) +N(См) +N (B) = 309,25 тыс. шт.

      Способ относительных разниц

а) N(ч) =
тыс. шт.;

б) N(См) =тыс. шт.;

в) N(В)тыс. шт.;

Общее влияние факторов: N =N(ч) +N(См) +N (B) = 309,3 тыс. шт.

4.4 . Способ взвешенных конечных разностей предполагает применение всех возможных постановок на основе способа абсолютных разниц.

Подстановка 1 производится в последовательности
результаты определены в предыдущих расчетах:

N(ч) = 216 тыс. шт.;

N(См) = 75 тыс. шт.;

N (B) = 18,25 тыс. шт.

Подстановка 2 производится в последовательности
:

а)+1 * 1500 * 144 = 216 тыс. шт.;

б) +5 * 25 * 11 = 18 тыс. шт.;

в) +2 * 25 *1505 = 75,5 тыс. шт.;

Подстановка 3 производится в последовательности
:

а) 2 * 24 * 1500 = 72 тыс. шт.;

б) 1 * 146 * 1500 = 219 тыс. шт.;

в) + 5 * 25 * 146 = 18,25 тыс. шт.

Подстановка 4 производится в последовательности
:

а) 2 * 1500 *5 * 146 * 24 = 17,52 тыс. шт.;

б) 5 * 146 * 24 = 17,52 тыс. шт.;

в) 1 * 146 * 1515 = 219,73 тыс. шт.;

Подстановка 5 производится в последовательности
:

а) 5 * 144 * 24 = 17,28 тыс. шт.;

б) 2 * 1505 * 24 = 72,27 тыс. шт.;

в) 1 * 146 * 1505 = 219,73 тыс. шт.

Подстановка 6 производится в последовательности
:

а) 5 * 24 * 144 = 17,28 тыс. шт.;

б) 1 * 1505 * 144 = 216,72 тыс. шт.;

в) 2 * 1505 * 25 = 75,25 тыс. шт.

Влияние факторов на результирующий показатель

Факторы

Размер влияния факторов при подстановке, тыс. шт.

Среднее значение влияния факторов

1. Численность

2. Сменность

3. Выработка

4.5. Логарифмический способ предполагает распределение отклонения результирующего показателя пропорционально доле каждого фактора в сумме отклонения результата

а) доля влияния каждого фактора измеряется соответствующими коэффициентами:

б) влияние каждого фактора на результирующий показатель рассчитывается как произведение отклонения результата на соответствующий коэффициент:

309,25*0,706 = 218,33;

309,25*0,2438 = 73,60;

309,25* 0,056 = 17,32.

4.6. Интегральный метод предполагает применение стандартных формул для расчета влияния каждого фактора:

5. Результаты расчетов каждого из перечисленных способов объединяются в таблице совокупного влияния факторов.

Совокупное влияние факторов:

Факторы

Размер влияния, тыс. шт.

Способом относительных разниц

Размер влияния, тыс. шт.

Способом цепных подстановок

Способом абсолютных разниц

Способом взвешенных конечных разниц

Логарифм. способ

Интегральный

способ

1. Численность

2. Количество смен

3. Выработка

Сопоставление результатов расчетов, полученных различными способами (логарифмическим, интегральным и взвешенных конечных разниц), показывает их равенство. Громоздкие расчеты способом взвешенных конечных разниц удобно заменить применением логарифмического и интегрального методов, которые дают более точные результаты по сравнению с приемами цепной подстановки и абсолютных разниц.

5. Вывод: Объем выпуска продукции возрос на 309,25 тыс. штук.

Положительное влияние в размере 217,86 тыс. шт. оказал рост численности персонала.

В результате увеличения количества смен объем выпуска возрос на 73,6 тыс. шт.

За счет увеличения выработки объем выпуска продукции увеличился на 17,76 тыс. шт.

Наиболее сильное влияние на объем выпуска продукции оказали экстенсивные факторы: рост численности персонала и количества отработанных смен. Совокупное влияние этих факторов составили 94,26 % (70,45 +23,81). На долю влияния фактора выработки приходится 5,74 % роста выпуска продукции.

Примечание: Применение рассмотренных приемов аналогично в отношении мультипликативных моделей любого количества факторов. Однако использование приема взвешенных конечных разниц к многофакторным моделям ограничено необходимостью выполнения большого количества расчетов, и это нецелесообразно при наличии других, более простых и рациональных приемов, например, логарифмического.

Задание . На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, S i 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
16a 0 + 136a 1 = 10872.41
136a 0 + 1496a 1 = 93531.1
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = 3.28, a 1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96

Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
16 927 61194.39 136 10874 1252743.75

R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T 17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S 1 = 0.578
Таким образом, F 17 = T 17 + S 1 = 707.416 + 0.578 = 707.994
T 18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S 2 = 0.613
Таким образом, F 18 = T 18 + S 2 = 710.698 + 0.613 = 711.311
T 19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S 3 = 1.39
Таким образом, F 19 = T 19 + S 3 = 713.979 + 1.39 = 715.369
T 20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S 4 = 1.419
Таким образом, F 20 = T 20 + S 4 = 717.26 + 1.419 = 718.68

Пример . На основе поквартальных данных построена мультипликативная модель временного ряда . Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s 1 + s 2 + s 3 + s 4 = 4. Для наших данных: s 4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или .
Общий вид мультипликативной модели выглядит так:

Где T - трендовая компонента, S - сезонная компонента и E - случайная компонента.
Назначение . С помощью данного сервиса производится построение мультипликативной модели временного ряда.

Алгоритм построения мультипликативной модели

Построение мультипликативной моделей сводится к расчету значений T , S и E для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
  1. Выравнивание исходного ряда методом скользящей средней.
  2. Расчет значений сезонной компоненты S .
  3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T x E).
  4. Аналитическое выравнивание уровней (T x E) с использованием полученного уравнения тренда.
  5. Расчет полученных по модели значений (T x E).
  6. Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Пример . Построить аддитивную и мультипликативную модель временного ряда, характеризующую зависимость уровней ряда от времени.
Решение . Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 898 - - -
2 794 1183.25 - -
3 1441 1200.5 1191.88 1.21
4 1600 1313.5 1257 1.27
5 967 1317.75 1315.63 0.74
6 1246 1270.75 1294.25 0.96
7 1458 1251.75 1261.25 1.16
8 1412 1205.5 1228.63 1.15
9 891 1162.75 1184.13 0.75
10 1061 1218.5 1190.63 0.89
11 1287 - - -
12 1635 - - -
Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.21 1.27
2 0.74 0.96 1.16 1.15
3 0.75 0.89 - -
Всего за период 1.49 1.85 2.37 2.42
Средняя оценка сезонной компоненты 0.74 0.93 1.18 1.21
Скорректированная сезонная компонента, S i 0.73 0.91 1.16 1.19
Для данной модели имеем:
0.744 + 0.927 + 1.183 + 1.211 = 4.064
Корректирующий коэффициент: k=4/4.064 = 0.984
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
12a 0 + 78a 1 = 14659.84
78a 0 + 650a 1 = 96308.75
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 1 = 7.13, a 0 = 1175.3
Среднее значения
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 1226.81 1 1505062.02 1226.81 1182.43 26.59 1969.62
2 870.35 4 757510.32 1740.7 1189.56 123413.31 101895.13
3 1238.16 9 1533048.66 3714.49 1196.69 272.59 1719.84
4 1342.37 16 1801951.56 5369.47 1203.82 14572.09 19194.4
5 1321.07 25 1745238.05 6605.37 1210.96 9884.65 12126.19
6 1365.81 36 1865450.09 8194.89 1218.09 20782.63 21823.45
7 1252.77 49 1569433.89 8769.39 1225.22 968.3 759.1
8 1184.64 64 1403371.14 9477.12 1232.35 1369.99 2276.31
9 1217.25 81 1481689.26 10955.22 1239.48 19.42 494.41
10 1163.03 100 1352627.82 11630.25 1246.61 3437.21 6987
11 1105.84 121 1222883.47 12164.25 1253.75 13412.51 21875.75
12 1371.73 144 1881649.21 16460.79 1260.88 22523.77 12288.93
78 14659.84 650 18119915.49 96308.75 14659.84 210683.05 203410.13
Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 1175.298 + 7.132t
Подставляя в это уравнение значения t = 1,...,12, найдем уровни T для каждого момента времени (гр. 5 табл.).
t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 898 0.73 1226.81 1182.43 865.51 1.04 1055.31
2 794 0.91 870.35 1189.56 1085.21 0.73 84801.95
3 1441 1.16 1238.16 1196.69 1392.74 1.03 2329.49
4 1600 1.19 1342.37 1203.82 1434.87 1.12 27269.14
5 967 0.73 1321.07 1210.96 886.4 1.09 6497.14
6 1246 0.91 1365.81 1218.09 1111.23 1.12 18162.51
7 1458 1.16 1252.77 1225.22 1425.93 1.02 1028.18
8 1412 1.19 1184.64 1232.35 1468.87 0.96 3233.92
9 891 0.73 1217.25 1239.48 907.28 0.98 264.9
10 1061 0.91 1163.03 1246.61 1137.26 0.93 5814.91
11 1287 1.16 1105.84 1253.75 1459.13 0.88 29630.23
12 1635 1.19 1371.73 1260.88 1502.87 1.09 17458.67
Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 12
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
t y (y-y cp) 2
1 898 106384.69
2 794 185043.36
3 1441 47016.69
4 1600 141250.69
5 967 66134.69
6 1246 476.69
7 1458 54678.03
8 1412 35281.36
9 891 111000.03
10 1061 26623.36
11 1287 3948.03
12 1635 168784.03
78 14690 946621.67


Следовательно, можно сказать, что мультипликативная модель объясняет 79% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.

где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.96
Поскольку F> Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 1175.298 + 7.132t
Получим
T 13 = 1175.298 + 7.132*13 = 1268.008
Значение сезонного компонента за соответствующий период равно: S 1 = 0.732
Таким образом, F 13 = T 13 + S 1 = 1268.008 + 0.732 = 1268.74
T 14 = 1175.298 + 7.132*14 = 1275.14
Значение сезонного компонента за соответствующий период равно: S 2 = 0.912
Таким образом, F 14 = T 14 + S 2 = 1275.14 + 0.912 = 1276.052
T 15 = 1175.298 + 7.132*15 = 1282.271
Значение сезонного компонента за соответствующий период равно: S 3 = 1.164
Таким образом, F 15 = T 15 + S 3 = 1282.271 + 1.164 = 1283.435
T 16 = 1175.298 + 7.132*16 = 1289.403
Значение сезонного компонента за соответствующий период равно: S 4 = 1.192
Таким образом, F 16 = T 16 + S 4 = 1289.403 + 1.192 = 1290.595

Использование в анализе хозяйственной деятельности экономико-математических методов.

Способы пропорционального деления и интегральный способ.

Способы цепной подстановки, абсолютных и относительных разниц.

Приемы и способы, используемые в анализе хозяйственной деятельности

Л3. Приемы и способы, используемые в АХД.

Сравнение – сопоставление изучаемых данных и фактов хозяйственной жизни. Различают горизонтальный сравнительный анализ, который применяется для определения абсолютных и относительных отклонений фактического уровня исследуемых показателей от базового; вертикальный сравнительный анализ, используемый для изучения структуры экономических явлений; трендовый анализ, применяемый при изучении относительных темпов роста и прироста показателей за ряд лет к уровню базисного года, т.е. при исследовании рядов динамики.

Обязательным условием сравнительного анализа является сопоставимость сравниваемых показателей, предполагающая:

· единство объемных, стоимостных, качественных, структурных показателей;

· единство периодов времени, за которые производится сравнение;
· сопоставимость условий производства;

· сопоставимость методики исчисления показателей.

Средние величины – исчисляются на основе массовых данных о качественно однородных явлениях. Они помогают определять общие закономерности и тенденции в развитии экономических процессов.

Группировки – используются для исследования зависимости в сложных явлениях, характеристика которых отражается однородными показателями и разными значениями (характеристика парка оборудования по срокам ввода в эксплуатацию, по месту эксплуатации, по коэффициенту сменности и т.д.)

Балансовый метод состоит в сравнении, соизмерении двух комплексов показателей, стремящихся к определенному равновесию. Он позволяет выявить в результате новый аналитический (балансирующий) показатель.

Например, при анализе обеспеченности предприятия сырьем сравнивают потребность в сырье, источники покрытия потребности и определяют балансирующий показатель – дефицит или избыток сырья.

Графический способ. Графики являются масштабным изображением показателей и их зависимости с помощью геометрических фигур.

Графический способ не имеет в анализе самостоятельного значения, а используется для иллюстрации измерений.

Индексный метод основывается на относительных показателях, выражающих отношение уровня данного явления к его уровню, взятому в качестве базы сравнения. Статистика называет несколько видов индексов, которые применяются при анализе: агрегатные, арифметические, гармонические и т.д.



Использовав индексные пересчеты и построив временной ряд, характеризующий, например, выпуск промышленной продукции в стоимостном выражении, можно квалифицированно проанализировать явления динамики.

Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями не находящимися в функциональной зависимости, т.е. связь проявляется не в каждом отдельном случае, а в определенной зависимости.

С помощью корреляции решаются две главные задачи:
· составляется модель действующих факторов (уравнение регрессии);
· дается количественная оценка тесноты связей (коэффициент корреляции).

Матричные модели представляют собой схематическое отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.

Математическое программирование – это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.

Метод исследования операций направлен на изучение экономических систем, в том числе производственно-хозяйственной деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.

Теория игр как раздел исследования операций - это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину. Сущность моделирования заключается в том, что взаимосвязь исследуемого показателя с факторными передается в форе конкретного математического уравнения.

В факторном анализе различают модели детерминированные (функциональные) и стохастические (корреляционные). С помощью детерминированных факторных моделей исследуется функциональная связь между результативным показателем (функцией) и факторами (аргументами).

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Фактор3ы, которые включаются в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями. Иначе говоря, построенная факторная система должна иметь познавательную ценность. Факторные модели, которые отражают причинно-следственные отношения между показателями, имеют значительно большее познавательное значение, чем модели, созданные при помощи приемов математической абстракции.

Последнее можно проиллюстрировать следующим образом. Возьмем две модели:

1) ВП = КР* ГВ;

2) ГВ = ВП/КР,

где ВП - валовая продукция предприятия; КР - численность (количество) работников на предприятии; ГВ - среднегодовая выработка продукции одним работником.

В первой системе факторы находятся в причинной связи с результативным показателем, а во второй - в математическом соотношении. Значит, вторая модель, построенная на математических зависимостях, имеет меньшее познавательное значение, чем первая.

3. Все показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это значит, что в ней должна учитываться соразмерность изменений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей:

1. Аддитивные модели используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

У = Х1+Х2+Х3+…+Хп

2. Мультипликативные модели применяются тогда, когда результативный показатель представляет собой произведение нескольких факторов.

У = Х1*Х2*Х3*…*Хп

3. Кратные модели применяются тогда, когда результативный показатель получают делением одного факторного на величину другого.

4. Смешанные модели – это сочетание в различных комбинациях предыдущих моделей.

У = (а+в)/с; У = а/(в+с); У = (а*в)/с; У = (а+в)*с.

Моделирование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции можно применять такие детерминированные модели, как:

ВП=КР*ГВ; ВП=КР*Д*ДВ; ВП=КР*Д*П*СВ

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей, а пределах установленных правил.

За счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от целей исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его основные элементы.

Например: VРП= VВП-ВИ (объем внутрихозяйственного использования). В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом: VРП= VВП–(С+К).

К классу кратных моделей применяют следующие способы их преобразования: удлинения, формального разложения, расширения и сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей. Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3 ) и объема выпуска продукции (VВП ). Исходная модель этой факторной системы будет иметь вид: С=З/ VВП

Если общую сумму затрат (3 ) заменить отдельными их элементами, такими, как оплата труда (ОТ ), сырье и материалы (СМ ), амортизация основных средств (А ), накладные затраты (НЗ ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:

С=ОТ/ VВП+ СМ/ VВП+ А/ VВП+ НЗ/ VВП=х1+х2+х3+х4,

где X1- трудоемкость продукции; Х2 - материалоемкость продукции; Х3 - фондоемкость продукции; Х4- уровень накладных затрат.

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей. Если b = l + m + n + p, то у=а/в=а/ l + m + n + p.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р): Р=П/З

Где П - сумма прибыли от реализации продукции; 3 - сумма затрат на производство и реализацию продукции. Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид: Р=П/ОТ+СМ+А+НЗ.

Себестоимость одного тонно-километра зависит от суммы затрат на содержание и эксплуатацию автомобиля (3 ) и от его среднегодовой выработки (ГВ ). Исходная модель этой системы будет иметь вид: C т/км = 3 / ГВ. Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов: C т/км = 3 / ГВ=3 /Д*П*СВ.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель у=а/в ввести новый показатель с , то модель примет вид: у=а/в=а*с/в*с=а/с*с/в=х1*х2.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (åД), то получим следующую модель годовой выработки:

ГВ = ВП *åД / åД *КР= ВП/åД * åД/ КР = ДВ*Д

где ДВ – среднедневная выработка, Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (åТ) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П).

ГВ = ВП *åД *åТ / åД КР * åТ = ВП/åТ * åТ / КР * åТ /åТ = СВ*Д*П

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:

у=а/в=а:с/в:с=х1/х2.

Фондоотдача определяется отношением валовой (ВП)или товарной продукции (ТП)к среднегодовой стоимости основных производственных фондов (ОПФ):

ФО=ВП/ОПФ

Разделив числитель и знаменатель на среднегодовое количество рабочих (КР), получим содержательную кратную модель с другими факторными показателями: среднегодовой выработки продукции одним рабочим (ГВ), характеризующей уровень производительности труда, и фондовооруженности труда (Фв):

ФО=ВП:КР/ОПФ:КР=ГВ/Фв

Необходимо заметить, что на практике для преобразования одной и той же модели может быть последовательно использовано несколько методов. Например:

ФО=РП/ОПФ=(П+СБ)/ОПФ=П/ОПФ+СБ/ОПФ= П/ОПФ+ОС/ОПФ*СБ/ОС

где РП – объем реализованной продукции(выручка); СБ – себестоимость реализованной продукции, П – прибыль, ОС – средние остатки основных средств.

В этом случае для преобразования исходной факторной модели, которая построена на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель, которая имеет большую познавательную ценность, т.к. учитывает причинно-следственные связи между показателями. Полученная конечная модель позволяет исследовать, как влияет на фондоотдачу рентабельность основных средств производства, соотношения между основными и оборотными средствами, а также коэффициент оборачиваемости оборотных средств.

Т.о., результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также профессиональных знаний и навыков исследователя.

Одним из важнейших методологических вопросов в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном анализе для этого используются следующие способы: цепной подстановки, абсолютных разниц, относительных разниц, пропорционального деления и интегральный метод.

Первых четыре способа основываются на методе элиминирования. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. при неизменности остальных. Это позволяет определить влияние каждого фак­тора на величину исследуемого показателя в отдельности.

Наиболее универсальным из них является прием цепной подстановки . Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминироваться (устранять, исключать) от влияния всех факторов, кроме одного, и определить воздействие последнего на прирост результативного показателя.

ВП=ЧР*Д*П*ЧВ

ВПп=ЧРп*Дп*Пп*ЧВп ∆ ВПчр= ВПусл 1 - ВПп

ВП усл 1 = ЧРф*Дп*Пп*ЧВп ∆ ВПд= ВПусл 2 - ВПусл 1

ВП усл 2 = ЧРф*Дф*Пп*ЧВп ∆ ВПп= ВП усл 3 - ВПусл 2

ВП усл 3 = ЧРф*Дф*Пф*ЧВп ∆ ВПчв= ВПф - ВП усл 3

ВП ф= ЧРф*Дф*Пф*ЧВф

∆ ВПобщ =∆ ВПчр+ ∆ ВПд + ∆ ВПп +∆ ВПчв

∆ ВПобщ = ВП ф - ВПп

дробная модель:

ФО = ВП / ОПФ

ФОп = ВПп / ОПФп ∆ФОвп = ФОусл-ФОп

ФОусл = ВПф / ОПФп ∆ФОопф = ФОф-ФОусл

ФОф = ВПф / ОПФф

∆ФОобщ = ∆ФОвп +∆ФОопф

∆ФОобщ = ФОф-ФОп

Для выявления структуры временного ряда, т.е. определения количественных значений компонентов, составляющих уровней ряда, чаще всего используют аддитивную или мультипликативную модели временных рядов.

Мультипликативная модель. У=Т*S*E

T-трендовая компонента

S-сезонная компонента

E-случайная компонента

Мультипликативная модель используется в случае, если амплитуда сезонных колебаний увеличивается или уменьшается.

Алгоритм построения модели. Процесс построения модели включает в себя следующие шаги:

    Выравнивание уровней исходного ряда методом скользящей средней.

    Расчет значений сезонной компоненты S

    Устранение сезонной компоненты из исходного уровня ряда и получение выровненных данных без S

    Аналитическое выравнивание уровней ряда и расчет значений фактора Т

    Расчет полученных значений (Т* S) для каждого уровня ряда

    Расчет абсолютных или относительных ошибок модели.

(или 4.Определение тенденции временного ряда и уравнения тренда; 5.Расчет абсолютных или относительных ошибок модели.)

26 Выделение сезонной составляющей

Оценку сезонной компоненты можно найти как частное от деления фактических уровней ряда на центрированные скользящие средние.

Для начала необходимо найти средние за период (квартал, месяц) оценки сезонной компоненты Si . В моделях сезонной компоненты обычно предполагается что сезонные взаимодействия за период взаимопоглощаются.

В мультипликативной модели взаимопоглощаемость сезонных воздействий выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле.

Выравнивание исходных уровней с помощью скользящей средней: а) Суммируются уровни ряда последовательно за каждый период времени за каждые 4 квартала со сдвигом на 1 момент времени и определяются условные годовые объемы потребления б) Разделим полученные суммы на 4, получим скользящие средние. Полученные выравненные значения не содержат сезонной компоненты. в) Приводим эти значения в соответствие с фактическими моментами времени для чего найдем среднее значение из 2-х скользящих средних – центрированные скользящие средние.

27.Коэффициент корреляции.

Для определения степени линейной связи рассчитывается коэфф-т корреляции.

Для определения нелинейной связи определяется индекс корреляции

, 0 1

Коэффициент детерминации: R 2 = 2 -для лин. связи. R 2 = 2 -для нелин. связи.

Показывает на сколько % изменения показателя у от своего среднего значения зависит от изменения фактора х от своего среднего значения. Чем ближе значение R² к 1, тем точнее модель.

Из всех полученных уравнений регрессии, лучшей является та, у которой коэф-т детерминации больший.

Если исследуется несколько факторов (больше2) то в этом случае рассчитывается множественный коэфф-т корреляции.R Y , X 1, X 2.. XN -множественный коэфф-т корреляции.

При анализе влияния нескольких факторов друг на друга определяется корреляционная матрица, которая состоит из всех возможных парных линейных коэфф-тов корреляции.

Корреляционная матрица: