Трудовые отношения

Что значит диафрагма в камере телефона. Что такое апертура камеры и для чего она нужна

Для большинства пользователей дисплей является наиболее важной составляющей мобильных устройств. Не удивительно, что пользователи выбирают то, что им нравится и потому здесь можно спорить о технологиях до бесконечности. Для сторонников AMOLED дисплеев Samsung этот вопрос более чем спорный, потому как очень многие имеют смартфоны серии Galaxy S. Ну, так что же лучше: RGB против PenTile.

Оба термина относятся к расположению субпикселей, которые составляют каждый пиксель AMOLED экрана. Дисплей двух флагманских устройств от Samsung, Galaxy S3 и Galaxy Note 2 используют матрицы Pentile и RGB соответственно. Сегодня мы представляем вам сравнение двух дисплеев. Но сначала давайте разберемся в некоторых теоретических понятиях.

Немного теории

Матрица RGB (red-green-blue) имеет по одному субпикселю для каждого цвета из трех основных. На каждый из субпикселей приходится треть от размера пикселя. Между тем, PenTile имеет более сложную схему, с чередованием красных и синих субпикселей, зажатых между зелеными.


Слева RGB, справа PenTile

PenTile матрица построена по принципу 2 субпикселя для каждого пикселя. То есть состоит из одного зеленого и красного или синего. Проблема в том, что нужны три основных цвета (синий, красный и зеленый) для получения большинства цветов. Например, для отображения белого цвета нужно, чтобы пиксел состоял из трех субпикселей одинаковой интенсивности. Но с PenTile мы имеем всего лишь 2 субпикселя, потому для отображения белого цвета пиксел «заимствует» третий субпиксел у соседа. В некоторых случаях (особенно при работе с текстом и графикой) эти дополнительные пиксели вызывают некоторый муар.

Многие пользователи считают, что RGB превосходит Pentile, хотя нужно сказать, что не все пользователи обеспокоены размытостью PenTile экранов. Ведь и у PenTile есть свои преимущества – такие дисплеи дешевле производить, они ярче, и как утверждает Samsung, со временем не теряют прочность.

Теперь, когда мы рассмотрели теорию, начинается самое интересное.

Дисплей Samsung Galaxy S3

Samsung Galaxy S3 имеет 4.8-дюймовый HD Super AMOLED дисплей с разрешением 1280 х 720 пикселей. Плотность пикселей дисплея составляет 306ppi и используется субпиксельное расположение по типу RGBG (красный-зеленый-синий-зеленый). Дисплей SGS3 способен отобразить около 16 миллионов цветов с контрастностью 3419 к 1.

Дисплей S3 не раз подвергался критике со стороны специалистов DysplayMate за искаженную цветовую гамму, которая создает зеленоватый оттенок на многих изображениях. Кроме того, эксперты говорят, что многие фотографии получаются перенасыщенными и яркими, все из-за большого количества зеленых субпикселей и отсутствия калибровки.

Дисплей Samsung Galaxy Note 2

Samsung Galaxy Note 2 имеет куда больший экран с диагональю 5.5-дюймов и HD разрешением 1280 х 720. В связи с большими размерами экрана плотность пикселей на дисплее Galaxy Note 2 значительно ниже, чем у Galaxy S3, и составляет 267ppi. Как и Galaxy S3, Galaxy Note 2 может похвастаться HD Super AMOLED дисплеем, но не с PenTile матрицей, а RGB.

Galaxy Note 2 имеет уникальную модель RGB, где вместо трех равнозначных субпикселей взяты больше синие субпиксели, и меньше зеленые и красные субпиксели. Синие субпиксели темнее, чем два других и это компенсируется его увеличенным размером. Причина, по которой Samsung использует необычное расположение объясняется тем, что синие субпиксели имеют более короткую продолжительность жизни, чем два других. Делая их больше, корейские инженеры продлили его долговечность.


Обратите внимание на большие синие субпиксели.

Интересно, что Samsung несколько месяцев назад заявили, что одной из причин выбора матрицы PenTile для Galaxy S3 стала именно долгая продолжительность службы в сравнении с RGB матрицей. Теперь же мы видим, что Samsung смогли увеличить срок службы RGB и использовать эту матрицу в Galaxy Note 2.

Фото сравнение

Чтобы показать разницу между RGB дисплеем Galaxy Note 2 и PenTile дисплеем Galaxy S3, мы положили их друг к другу и сделали несколько снимков.

Во-первых, вот снимок дисплеев при сравнении бок о бок. Нажмите для увеличения.

Вы можете заметить, что практически нет разницы между двумя смартфонами. Несмотря на различную плотность пикселей, оба дисплея кажутся идентичными невооруженным взглядом.

При увеличении 1.5х мы уже начинаем видеть строки пикселей. Galaxy Note 2 кажется чуть контрастнее и разница особенно заметна в зеленых участках изображения. Помните, что RGB матрица имеет по 2 зеленых субпиксела, которые разделены между собой третьим.

Разница между дисплеями Galaxy S3 и Galaxy Note 2 действительно становится очевидной при увеличении в 2.5 раза. Вы можете заметить строки пикселей на обоих дисплеях. Явно заметны зеленые пиксели на экране Galaxy S3, что делает его изображение более зернистым, чем у Galaxy note 2.

Наконец, при увеличении в 5.5 раза мы уже видим отдельные пиксели на изображении. Обратите внимание, что дисплей Galaxy S3 увеличили чуть больше (примерно в 6 раз), чтобы выделить каждый в отдельности. Вот теперь можно ясно увидеть разницу между двумя субпиксельными схемами – PenTile все-таки менее четкий.

Сравнение текста и графики

Матрица PenTile показывает свои слабые стороны при отображении текста, иконок и другой мелкой графики. Именно поэтому можно заметить, что изображение имеет артефакты и «плывет» вокруг элементов графики.

Вот увеличенный образец текста:


Galaxy Note 2


Galaxy S3

Вы можете заметить, что Galaxy S3 имеет боле выраженную дымку вокруг текста, тогда как у Galaxy Note 2 такого нет и текст более четкий.

В следующем изображении, которое еще более увеличено, можно увидеть красные и синие пиксели, которые и вызывают нечеткость.


Galaxy Note 2


Galaxy S3

Следующие изображения показывают, что имеется зеленоватый оттенок при чтении текста на белом фоне, если смотреть под определенным углом.

Телевизоры, планшеты, мониторы, экраны GPS-приёмников, смартфоны - кажется, что жидкокристаллические дисплеи окружают нас повсюду. C момента их появления было разработано огромное количество подвидов технологии представления информации. Апогеем к сегодняшнему дню стали органические светодиоды OLED (organic light emission diode) и LCD-IPS (in-plane switching, дословно - «переключение в одной плоскости»). Но давайте обо всём по порядку.

Часть теоретическая. Как работает LCD?

В этом разделе в определенной степени я повторю теоретический материал статьи, опубликованной на сайте «ХабраХабр» и посвящённой глубокому и доскональному исследованию устройства LCD- и E-Ink-дисплеев.

Итак, представим, что на дворе 1888 год, один австрийский ботаник по фамилии Рейнитцер заметил, что некоторые вещества имеют две точки плавления, при этом образуется сначала мутный, а затем прозрачный расплав. Спустя 16 лет, в 1904 году, немецкий физик Отто Леманн смог предложить объяснение данному феномену. Он высказал предположение, что кристаллическая и жидкая фаза сосуществуют при одной и той же температуре и, соответственно, это новое агрегатное состояние вещества, пограничное между твердым и жидким, - . Однако мировому научному сообществу потребовалось более 60 лет, чтобы принять идеи учёного и признать их.

Лишь в начале 1960-х годов учёные вернулись к детальному изучению жидких кристаллов, а в 1968 году было предложено первое устройство для отображения информации, использовавшее жидкие кристаллы - нематики, и 1970-е стали временем общедоступности ЖК и широкого распространения технологий отображения информации на их основе. Несмотря на столь грандиозный успех ЖК-технологии в наши дни, ни Рейнитцер, ни Леманн не удостоились Нобелевской премии, лишь французу Пьеру Жиль де Жену в 1991 году была вручена награда с формулировкой «За обнаружение возможности переноса методов изучения явлений упорядоченности в простых системах на жидкие кристаллы и полимеры ».

Каким образом работает жидкий кристалл внутри дисплея? Технология LCD имеет несколько основных модификаций: Super LCD, IPS и его разновидности (к этому типу относится эппловский Retina Display). Любой LCD-монитор состоит из нескольких основных частей: активной матрицы - сетки тонкоплёночных транзисторов (пресловутая аббревиатура TFT - thin film transistors), с помощью которых формируется изображение; слоя жидких кристаллов, которые либо пропускают свет от ламп подсветки, либо нет, и светофильтров, формирующих R-, G-, B-субпиксели; и в-третьих, системы подсветки.

Рассмотрим работу отдельного субпикселя. Свет, поступая от источника (белого светодиода или лампы) через специальную прозрачную пластину-волновод, рассеивается таким образом, чтобы вся матрица имела равную освещённость по всей своей площади. Далее фотоны проходят поляризационный фильтр, который пропускает только волны с определённой поляризацией . Проникнув через стеклянную подложку, на которой находится активная матрица из тонкоплёночных транзисторов, свет попадает на тончайший слой жидкого кристалла. Молекулы ЖК получают «команду» от нижележащего транзистора, на какой угол повернуть поляризацию световой волны, чтобы она, пройдя сквозь ещё один поляризационный фильтр, развёрнутый под углом 90 градусов к первому, задала интенсивность свечения отдельного субпикселя. Окраску же субпикселю дают светофильтры (красный, зелёный или синий), нанесённые на поверхность второй стеклянной подложки. Смешиваясь, волны от трёх невидимых глазу человека субпикселей формируют пиксель изображения заданного цвета и интенсивности.

а) Схематическое устройство LCD-дисплея (у каждого субпикселя свой собственный мини-слой с ЖК), б) устройство жидкокристаллической плёнки в деталях

На вышеприведённом рисунке представлена так называемая TN (Twisted Nematic)-технология, когда электроды управления ЖК располагаются сверху и снизу, однако сегодня всё большую популярность набирает технология IPS (in-plane switching, дословно - «переключение в одной плоскости»). Суть её такова, что оба электрода управления находятся в одной плоскости, при этом уменьшаются световые потери и экран выглядит ярче, чем обычный LCD.

Схема работы ЖК-дисплеев, выполненных по технологии IPS

Различие в строении ячеек TFT-матриц сверху вниз: TN (Twisted Nematics); IPS (In Plane Switching); PVA (Patterned Vertical Alignment)

Также, помимо хорошо зарекомендовавшей себя технологии LCD + TFT, существует активно продвигаемая технология органических светодиодов OLED + TFT = AMOLED — active matrix OLED. Основное отличие последней заключается в том, что роль поляризатора, слоя ЖК и светофильтров играют органические светодиоды трёх цветов. По сути это молекулы, способные при протекании электрического тока испускать свет, а в зависимости от количества протекшего тока менять интенсивность окраски, подобно тому, как это происходит в обычных LED. Убрав поляризаторы и ЖК из панели, мы потенциально можем сделать её значительно тоньше (вплоть до долей миллиметра), а самое главное — гибкой! Как известно, за всё надо платить, и ниже я наглядно покажу, к чему приводит «гибель» части OLED-пикселей.

Лабораторные работы

Теория - это одно, а посмотреть на все собственными глазами - совсем другое. Под микроскопом полежали следующие наиболее популярные на сегодняшний день модели смартфонов и планшетов: Apple iPad 2, iPad 3, iPhone 4, HTC Desire HD, Evo 3D, Nokia Lumia 800 , Samsung Galaxy Note , Galaxy Nexus , Galaxy S II , Galaxy S+, Galaxy S c покалеченным жизнью дисплеем и Sony Xperia S.

IPS . Начало

Начнём, пожалуй, с планшетов, а именно iPad. Как второй, так и третий iPad выполнены, по всей видимости, по одной из самых продвинутых технологий - IPS-Pro.

Микрофотографии дисплея Apple iPad 2

Apple iPad 2: слева — все пиксели работают, справа — экран выключен

Обратите внимание, что при выключенном экране продолжают светиться «уши» красного и синего пикселей, во время съёмки эти области мерцали, поэтому есть ненулевая вероятность того, что даже в выключенном состоянии на дисплеи подаётся пусть и совершенно небольшое, не влияющие на продолжительность жизни батарейки питание.

Размеры одного субпикселя (точнее, светящегося субпикселя) у iPad 2 составляют приблизительно 72 на 218 микрометров, а размер одного пикселя, соответственно, около 258 на 258 мкм, что вполне различимо человеческим глазом. Свет испускается примерно с 70% площади дисплея. Здесь и далее все цифры пригодны для расчёта плотности «упаковки» пикселей, а также для оценки доли светящейся площади поверхности экрана.

Apple iPad 3: в сравнении с iPad 2 чувствуется существенный прогресс в уменьшении размера пикселей и увеличении разрешения

Форма субпикселей у нового iPad практически ничем не отличается от оной в iPad 2, что свидетельствует об однотипной технологии исполнения. Впрочем, в матрице планшета третьего поколения ряды пикселей разнесены друг относительно друга. Размер субпикселя равен приблизительно 30 на 74 мкм, а всего пикселя - 132 на 132 мкм. Это в понятии «разрешение экрана» примерно соответствует его увеличению в четыре раза по сравнению с тем, что было в iPad 2. Собственно, более плотную упаковку тех же самых пикселей, выполненных по технологии IPS, маркетологи Apple и называют Retina Display. При этом важно помнить, что в iPad 3 около 35% матрицы вообще не излучает ни одного фотона. Кстати, если верить Интернету, то дисплеи для планшетов Apple поставляет корейская LG.

IPS . Продолжение

Если мы взглянем на дисплей Samsung Galaxy S+, то пиксели в данном устройстве расположены похожим на AS-IPS (см. иллюстрацию в первой части статьи) образом (при желании можно различить отдельные «полосочки» в субпикселе). Размер субпикселя составляет около 40 на 110 мкм, а всего пикселя - 143 на 143 мкм. Этот показатель почти такой же, как у iPad 3, при этом всего лишь пятая часть дисплея не используется по назначению.

Samsung Galaxy S+: вполне достойный конкурент iPad 3

Экран Retina iPhone 4

С выходом iPhone 4, а затем и iPad 3 только и слышно об экранах Retina, которые обладают необычайно маленьким размером субпикселя (около 30 на 72 мкм) и, соответственно, пикселя (около 108 на 108 мкм), что позволяет пользователям данных смартфонов наслаждаться сверхчётким и очень ярким (излучающая площадь занимает до 75% дисплея) изображением.

Apple iPhone 4: один из лучших по размеру пикселя

PenTile и AMOLED - жизнь и смерть органических светодиодов

Как ни странно, но в этом разделе действительно пойдёт разговор о жизни и смерти. Сначала о жизни. Samsung разработала и теперь активно продвигает в массы две технологии, зачастую совмещая их: AMOLED и PenTile. PenTile - это технология расположения субпикселей «оптимальным образом», которая, если не вдаваться в подробности восприятия, вкупе с системой рендеринга изображения позволяет получать яркие и чёткие картинки с хорошим сглаживанием и при этом экономить заряд батареи.

По всей видимости, основным поставщиком дисплеев для смартфонов Nokia является именно Samsung. Пример тому - недавно вышедший Nokia Lumia 800 с AMOLED дисплеем, выполненным по технологии PenTile. Размеры субпикселей сильно отличаются, так, красный - 64 на 46 мкм, зелёный - 95 на 15 мкм, синий - 95 на 49 мкм. Весь же пиксель имеет размер 268 на 138 мкм (или 2 пикселя на площадке 268 на 268 мкм), таким образом, формально пиксель имеет не квадратную, как во всех остальных технологиях, а прямоугольную форму (но система рендеринга это учитывает!). Общая излучающая поверхность составляет около 30%, чего, по мнению инженеров, при высокой яркости OLED должно хватить с лихвой.

Nokia Lumia 800: видимо, экраны закупаются у Samsung

Теперь немного о смерти OLED. OLED - это такая вещь в себе, что сложно представить себе, как она умирает и почему это происходит. Причин может быть много, но результат один - искажённая, причём очень сильно, цветопередача дисплея. Представьте себе, что все пиксели влияют друг на друга, так как от силы тока и напряжения зависит светимость субпикселей (для LCD-технологии светимость зависит исключительно от подсветки и рассеивающих элементов). Если выходит из строя один органический светодиод, то через остальные начинают протекать другие, непредусмотренные при разработке токи. Так, к примеру, зелёный и красный будут светить ярче при смерти синего, при этом на микроуровне не будет ровным счётом ничего необычного. Видимо, где-то в центре (от удара или перепада температуры, например) умер один или несколько пикселей и образовался неработающий ряд, который у краёв дисплея светит, но не в полную силу. В случае обычного LCD это привело бы к чёрной точке, в случае же OLED - к изменению цветопередачи всего дисплея.

Samsung Galaxy S: в центре целый ряд пикселей не работает

Samsung Galaxy S: пример смерти субпикселей, края ещё сопротивляются

Если сравнивать Samsung Galaxy S и Nokia Lumia, можно заметить, что в пределах погрешности размеры субпикселей (красный - 68 на 54 мкм, зелёный - 105 на 14 мкм, синий - 106 на 54 мкм) и пикселя (288 на 142 мкм) сходны. Излучающая площадь - около 30% от площади всей матрицы.

Для сравнения — ещё два дисплея, выполненные по технологии PenTile: Samsung Galaxy Note и Nexus S. В первом случае размеры субпикселей: красный 37 на 52 мкм, зелёный 12 на 85 мкм, синий 37 на 77 мкм, общий размер пикселя 123 на 240 мкм, при доле светоизлучающей поверхности всего лишь в 20%.

Samsung Galaxy Note — по идее, самый высокотехнологичный среди всех представленных AMOLED

Размеры субпикселей в случае Nexus S: красный — 30 на 45 мкм, зелёный 13 на 71 мкм, синий 30 на 70 мкм, общий размер пикселя 105 на 215 мкм, при доле светоизлучающей поверхности ~23%.

Nexus S: Samsung всё уменьшает и уменьшает размеры субпикселей в PenTile

В рассмотренном выше Galaxy S была применена технология PenTile, затем инженеры компании решили поэкспериментировать и установили в Galaxy S II дисплей, выполненный по технологии Real Stripe (аналогичный дисплей установлен, например, в смартфоне Optimus True HD LTE от LG). В результате качество картинки получилось отменным! Тонкие полоски субпикселей (ширина красного и зелёного около 14 мкм, а синего - 28 мкм) при длине в 135 мкм и излучающей площади в 30-35 процентов делают из этой матрицы достойного конкурента всяким PenTile и, в каком-то смысле, даже экранам Retina.

Samsung Galaxy S II: достойный конкурент технологии PenTile

Однако в новом Galaxy S III компания опять вернулась к PenTile-дисплеям , но с приставкой HD. Когда же именно маркетологи свернут мегаакцию «два по цене трех», покажет время.

HTC и Sony : особое мнение

Есть на свете такие компании, которые не распыляются на разработку и внедрение новых технологий, а пытаются по максимуму выжать последние соки из старых и хорошо себя зарекомендовавших. Например, HTC, которая гнёт линию в сторону экранов SuperLCD, и Sony, которая даже во флагманские модели устанавливает пусть и несколько модернизированные, но всё же обычные LCD-матрицы. Обе технологии - это классика LCD: один электрод внизу, другой сверху, а между ними жидкий кристалл…

HTC Desire HD: просто и со вкусом SuperLCD

Размеры субпикселя составляют 40 на 120 мкм, а всего пикселя 153 на 153 мкм, при этом светоизлучающая поверхность занимает 60-65% всей матрицы.

Что же касается Sony, то размеры субпикселей у Xperia S составляют: для красного и зелёного 25 на 100 мкм, для синего 40 на 100 мкм. Общий размер пикселя - 100 на 100 мкм, что на четверть меньше, чем у iPad 3 и даже iPhone 4! При этом свет испускается с 65% поверхности пикселя. Что-то не припоминаем, чтобы Sony восхваляла свою версию Retina как верх чёткости.

Sony Xperia S — по всей видимости, лидер гонки за чёткость!

Так ли хорош 3D?

Говорят, что HTC EVO 3D, выполненный по приевшейся SuperLCD-технологии, не имеет линз для создания 3D-изображения. Так как же это происходит? Очень просто - за счет дополнительного слоя поляризатора, который представляет собой ещё один «аквариум» жидких кристаллов, при этом размер «полосок» соответствует ширине пикселей. При включении 3D-режима этот слой позволяет одному глазу видеть одну картинку, а другому - другую (с чередованием через строку), а за счёт повышения яркости экрана нам кажется, что ничего не изменилось, кроме появления трёхмерности. Недостатком дисплея является то, что у него есть «слепые» зоны, то есть смартфон можно наклонить так по отношению к наблюдателю, что эффекта 3D последний не заметит. Данная модель, насколько известно, большой популярностью не пользуется, однако и Nokia, и Samsung разрабатывают свои планы по .

Возвращаясь к цифрам: размеры субпикселя данного дисплея сопоставимы с оными в Desire HD — 35 против 40 и 106 против 120 мкм.

HTC Evo 3D: трёхмерность-трёхмерность, не видим мы никакой трёхмерности, нас и 2D устраивает!

На создание данной статьи меня сподвигли две вещи: многочисленные спекуляции маркетологов и профильных журналистов на тему экранов; и куча абсолютно одинаковых веток комментариев под обзорами смартфонов с абсолютно одинаковыми дискуссиями о том, какие матрицы лучше. Обычно, самая жара происходит под обзорами китайских телефонов с OLED экранами. Я устал вести борьбу с ветряными мельницами, общаясь с каждым читателем в отдельности, в этом материале я решил расставить все точки над i и развеять многочисленные мифы о современных экранах, забегая вперед скажу, что упор будет сделан на противостояние IPS и AMOLED матриц. Скорее всего большинство из вас не увидит в написанном ничего нового, сакральных знаний вы здесь не получите, как и срыва покровов. Я расскажу об очевидных вещах, о которых не хотят говорить ни блогеры ни журналисты. Гайд рассчитан на адекватных думающих людей, убежденные фанатики могут отправляться по своим делам.

Определение термина “экран”

Прежде чем перейти к сути, нужно дать определение термину экран и прояснить его функциональное назначение. Википедия говорит нам, что экран или дисплей – это электронное устройство, предназначенное для визуального отображения информации. Если попытаться дать менее лаконичное и более современное определение экрана с точки зрения функционального назначения и с упором на потребительские свойства, то получится как-то так: экран – это устройство задача которого максимально точно и подробно отображать всевозможный контент и пользовательский интерфейс операционных систем и приложений такими какими их задумали авторы . За “максимально подробно” отвечает физическое разрешение, иначе: количество наименьших элементов экрана (picture’s elements) или просто пикселей (pixels), чем выше разрешение тем лучше, в идеале оно должно быть бесконечно большим. За “максимально точно” отвечают такие параметры как: точность цветопередачи и контрастность или отношение самой светлой и самой темной точки на экране. К второстепенным параметрам, напрямую не влияющим ни на точность ни на подробность отображения информации, но влияющим на потребительские свойства экрана, относятся: максимальная яркость, искажение картинки при отклонении взгляда от перпендикулярного, коэффициент отражения, частота обновления картинки, время отклика, энергоэффективность и некоторые другие. Особняком стоит такой параметр как цветовой охват – важнейший параметр для профессиональных мониторов и практически ничего не значащий для устройств предназначенных для потребления контента. Но именно цветовой охват в последние годы является предметом множества спекуляций со стороны производителей мобильных гаджетов. Давайте проясним эту мутную тему, прежде чем двигаться дальше.

Что такое цветовой охват и почему он является предметом множества спекуляций

Начать нужно с того, что любое изображение при захвате и сохранении в память фото- или видеокамеры кодируется. Искусственно созданные картинки и клипы, а также части графического пользовательского интерфейса операционных систем и приложений закодированы схожим образом изначально. В обоих случаях информация о цвете представляется с помощью цветовой модели – специального математического инструмента для описания цвета с помощью чисел или, если быть точными, координат. Самой распространенной является трехмерная RGB модель, в ней каждый цвет описан набором из трех координат отвечающих за один из цветов: красный, зеленый и синий, от отношения яркости каждой из компонент зависит отображаемый оттенок. Современные экраны способны отображать лишь часть спектра цветов и оттенков видимых человеком, цветовой охват буквально означает насколько велика эта “часть”. В силу такой ограниченности человек вынужден создавать стандарты представления цветового спектра отталкиваясь от возможностей существующих экранов. Так в 1996 году для унификации использования модели RGB в мониторах и печати, HP и Microsoft разработали стандарт sRGB , который использовал основные цвета описанные распространенным в то время на телевидении стандартом BT.709 и гамма-коррекцию рассчитанную на мониторы с электронно-лучевой трубкой. Важно понимать, что такая унификация позволяет, хоть и с некоторыми оговорками, гарантировать то, что создатель и потребитель контента на своих экранах будут видеть примерно одно и то же. Впоследствии стандарт sRGB получил широкое распространение во всех областях производства контента, в том числе в сфере создания интернет-сайтов. Конечно, существуют и другие стандарты представления цветового спектра, например Adobe RGB, цветовой охват которого намного шире , но на сегодняшний день подавляющая часть контента закодирована в соответствии с sRGB.

Что же произойдет если sRGB контент просматривать на экране с более широким цветовым охватом без адаптации? Координаты пространства sRGB будут перенесены в систему координат цветового пространства такого экрана, вследствие чего цвета будут казаться более насыщенными, чем есть на самом деле, в некоторых случаях оттенки исказятся настолько, что оранжевый цвет станет красным, салатовый зеленым, а голубой синим. И наоборот, если контент имеющий более широкий цветовой охват просматривать на экране с sRGB, перенос координат приведет к тому, что цвета будут казаться менее насыщенными, чем должны быть.


Мы все знаем, что экраны большинства современных флагманских смартфонов обладают расширенным относительно sRGB цветовым охватом, как же это сказывается на их потребительских свойствах? Если это смартфон или планшет на android, то возможны три варианта. В лучшем случае в настройках оболочки будут присутствовать предустановленные цветовые профили, среди которых есть тот, что приводит пространство к стандарту sRGB, примером могут служить MIUI или оболочка от Samsung. Но, даже в этом случае применение профилей “на лету” невозможно, и пользователю придется выбирать между расширенным цветовым охватом и правильной цветопередачей. Второй вариант, это когда в системе нет встроенных профилей, но в настройках разработчика можно активировать режим sRGB, например это можно сделать на смартфонах Google Pixel и OnePlus 3T. К сожалению, графический интерфейс операционной системы при активации режима sRGB становится блеклым, так как закодирован в соответствии с цветовым охватом их экранов. В третьем худшем варианте никаких профилей в системе пользователь не найдет и никакого выбора соответственно не получит, ему останется наслаждаться перенасыщенными цветами. А вот в персональных компьютерах на Windows и MacOS такой проблемы нет, так как обе системы не только поддерживают цветовые профили , но и могут “на лету” преобразовывать цвета из одного пространства в другое, то есть вне зависимости от того какой контент и на каком экране будет отображаться, пользователь с некоторыми оговорками будет видеть цвета такими какими их задумал автор. Схожая система менеджмента цветовых профилей есть и в iOS. Производители, то ли ради красивых циферок на странице спецификаций, то ли просто чтобы было, продолжают устанавливать во флагманские модели IPS и OLED экраны с расширенным цветовым охватом не смотря на то, что в этом нет никакой необходимости, так как 99% контента соответствует стандарту sRGB и вряд ли ситуация в ближайшее время коренным образом поменяется. Задач, которые могут выполнять такие экраны в устройствах созданных для потребления контента, просто нет. Во всем этом был бы хоть какой-то смысл, если бы Google добавил в Android менеджмент цветовых профилей, как это сделал Apple, но как минимум в 2017 году мы этого не увидим. Ирония заключается в том, что проблема создана на пустом месте, и решать ее никто не торопится.

Жидкокристаллический экран: принцип работы; преимущества и недостатки

Еще двадцать лет назад в большинство мониторов и телевизоров устанавливались экраны на основе электронно-лучевой трубки , вскоре им на смену пришли жидкокристаллические экраны или LCD (liquid crystal display) , которые со временем получили несколько веток развития и на сегодняшний день существует три технологии производства матриц жидкокристаллических экранов: TN, MVA и IPS, последняя в силу удачного сочетания преимуществ и недостатков стала доминирующей в сегменте мобильной техники. Принцип работы LCD несложен, в зависимости от технологии производства некоторые детали могут различаться, но типичная матрица включает в себя лампу подсветки и шесть других слоев. Первым за лампой располагается вертикальный фильтр который поляризует свет соответствующим образом. За ним идут два слоя электродов с расположенным между ними слоем жидких кристаллов, поданное на электроды напряжение ориентируют кристаллы и те преломляют свет таким образом, чтобы он проходил или не проходил через следующий слой – горизонтальный поляризационный фильтр. Последним идет цветовой фильтр – красный, зеленый или синий. Жидкокристаллические экраны легче, компактнее и энергоэффективнее своих предшественников, но они имеют и ряд серьезных недостатков, в частности малую контрастность и глубину черного цвета, ограниченный даже в потенциале цветовой охват, который зависит от несовершенства ламп подсветки. Кроме того показатели яркости и контрастности могут ухудшаться если смотреть на экран не под прямым углом.

Экран на органических светодиодах: преимущества, недостатки, ШИМ, Pentile

Относительно недавно у LCD появился серьезный конкурент – это экраны с активной матрицей на органических светодиодах или AMOLED . Такие экраны принципиально отличаются от LCD тем, что в них источником света является не лампа подсветки, а каждый субпиксель в отдельности, что наделяет AMOLED множеством преимуществ перед жидкокристаллическими экранами, главными из которых являются: практически бесконечная контрастность; меньшее энергопотребление при показе изображений с преобладанием темных тонов; потенциально более широкий цветовой охват; и меньшие габариты. Первые AMOLED экраны кроме преимуществ имели и значимые недостатки, в числе которых: неточная цветопередача; быстрое выгорание светодиодов; высокое энергопотребление при показе изображений с преобладанием светлых тонов; мерцание из-за широтно-импульсной модуляции; и главное высокая стоимость производства. Со временем большинство недостатков смогли побороть или свести их к минимуму, кроме ШИМ, который по сей день является ахиллесовой пятой технологии. Широтно-импульсная модуляция или ШИМ – это один из способов регулировать яркость светодиодов, побочным эффектом которого является мерцание экрана с некоторой частотой. Большинство людей не восприимчивы к такого рода мерцанию, но у некоторых пользователей ШИМ может вызывать быстрое утомление глаз и даже головную боль. Важно отметить, что эффект мерцания полностью отсутствует на значениях яркости близких к максимальным и начинает проявляться при уровне яркости 80% и ниже.

Невозможно пройти мимо темы с организацией субпикселей в экранах на органических светодиодах, дело в том, что у большинства AMOLED матриц субпиксели выстроены по схеме RGBG , когда пиксель состоит не из трех субпикселей как у типичного LCD экрана, а из четырех: красного, синего и двух зеленых, такую схему еще называют Pentile. Производитель (Samsung) считает физическое разрешение таких экранов по количеству зеленых субпикселей, красных и синих субпикселей в матрице ровно в два раза меньше. Очевидно, что для получения оттенка нужно как минимум три полноценных субпикселя. Таким образом, эффективное разрешение таких экранов не равно номинальному разрешению указанному в официальной спецификации. К примеру для QHD-экрана номинальное разрешение равно 2560*1440 пикселей, разрешение исходя из количества красных и синих субпикселей будет равно примерно 1811*1018:

Эффективное разрешение такой матрицы с учетом хитрых алгоритмов интерполяции заложенных в контроллер экрана находится где-то между 1811*1018 и 2560*1440, можно считать, что оно соотносится с FullHD разрешением в RGB-матрицах. Очень может быть, что именно для такого соответствия Samsung выбирает QHD разрешение для своих флагманских смартфонов уже много лет подряд.

Подробное сравнение IPS и AMOLED на примере экранов смартфонов iPhone 7 и Galaxy S8

Теперь после того как мы узнали все о характеристиках экранов и о особенностях разных типов матриц можно перейти к главному вопросу: какая технология лучше? Уверен, корректно пытаться ответить на этот вопрос сравнивая лучшие AMOLED и IPS матрицы имеющиеся на сегодняшний день, а именно экраны смартфонов Samsung Galaxy S8 и Apple iPhone 7 . Так как тестовым оборудованием я пока не обзавелся, проанализирую результаты тестов взятые с авторитетного ресурса . Начнем с разрешения, у экрана Galaxy S8 оно составляет 2960*1440 пикселей, гарантированное эффективное разрешение будет равно 2094*1018, гарантированная эффективная плотность пикселей равна 403 на дюйм. У iPhone 7 Plus номинальное оно же эффективное разрешение меньше: 1920*1080, а эффективная плотность пикселей 401 на дюйм. Очевиден перевес в пользу экрана от корейского вендора. Разрешения обоих экранов хватает для повседневного использования и недостаточно для комфортной эксплуатации со шлемами виртуальной реальности. Далее перейдем к точности, показатель контрастности у Galaxy S8 практически бесконечный. У iPhone 7 заявленная контрастность 1400:1, фактическая чуть выше – 1700:1, такой контрастности более чем достаточно для комфортного просмотра контента. Получается, что и по этому параметру экран Galaxy S8 оказался впереди. Что касается точности цветопередачи, то оба смартфона показали фактически одинаковые результаты, ошибками цветопередачи в Galaxy S8 и iPhone 7 можно смело пренебречь. Наиболее важные на мой взгляд второстепенные характеристики вы можете видеть ниже:

Параметр Samsung Galaxy S8 Apple iPhone 7
Эффективное разрешение, больше лучше 2094*1018 1920*1080 (iPhone 7 Plus)
Эффективная плотность пикселей на кв.дюйм, больше лучше 403 401 (iPhone 7 Plus)
Контрастность, больше лучше бесконечная 1400:1
Средняя погрешность цветопередачи sRGB / Rec.709 JNCD, очень хорошо если меньше чем 3,5 2,3 1,1
Максимальная яркость, больше лучше 1020 нит 705 нит
Минимальная яркость, меньше лучше 2 нит 3 нит
Коэффициент отражения внешнего освещения, меньше лучше 4,5% 4,4%
Точка белого D65, стандарт 6500 К 6520 К 6806 К (холоднее)
Падение яркости при отклонении взгляда на 30°, лучше когда меньше 50% 29% 54% портретный режим; 55% альбомный режим.
Контрастность при отклонении взгляда на 30°, больше лучше бесконечная 980:1 портретный режим; 956:1 альбомный режим.
Максимальное энергопотребление, меньше лучше 1,75 ватт при 420 нит, на 13,1 дюйм² заливка белым 1,08 ватт при 602 нит, на 9,4 дюйм²

Что касается цветового охвата, то тут впереди iPhone 7, так как он может отображать цвета пространства DCI-P3 или 126% поля sRGB, при этом пользователю не нужно жертвовать цветопередачей, контент отображается исходя из заложенного в него цветового профиля. Экран Galaxy S8 имеет еще более широкий цветовой охват – примерно 142% от поля sRGB, но не имеет менеджмента цветовых профилей, загоняя пользователя в угол, то есть в Основной режим, который соответствует 100% поля sRGB.

Так что в итоге? Если рассматривать технологии экранов в отрыве от конечного продукта, то AMOLED на сегодняшний день практически во всем превосходит IPS, правда до сих пор имеет проблемы с ШИМ и высоким энергопотреблением. Без всякого сомнения за матрицами на органических светодиодах будущее. К сожалению, из-за ограничений Android их потенциал пока не раскрыт полностью. При сравнении готовых решений в лице Galaxy S8 и iPhone 7, очевидно небольшое превосходство последнего за счет честного DCI-P3 и эталонных остальных параметров. Хочу предостеречь вас от того, чтобы проецировать результаты вышеописанного сравнения на абсолютно все IPS и AMOLED экраны. На рынке очень много хороших, средних и плохих матриц, и в каждом случае нужно разбираться отдельно. В этом нам помогут интернет-издания ориентированные на техническую подробность и достоверность, к таким изданиям я бы отнес уже упомянутый , anandtech.com и некоторые другие сайты, из русскоязычных сайтов – ixbt.com .

Возможно не стоит относится к потребительским свойствам экранов слишком серьезно, ведь на объективную информацию почти всегда накладывается фактор субъективного восприятия. Например, в юго-восточной Азии есть очень много людей, которым нравятся неестественные перенасыщенные цвета, в нашей стране таких людей тоже не мало. С другой стороны транслировать налитую в уши маркетологами информацию в многочисленных дискуссиях под обзорами на YouTube как минимум странно. Напоследок побуду Кэпом и дам пару банальных советов: не переставайте думать и относитесь критически к любой информации получаемой от представителей брендов и из СМИ, умейте анализировать данные и проверять факты или просто читайте ресурсы и смотрите блогеров, которым можно доверять.

Тестируем флагманские камеры “вслепую”, чтобы убедиться: количество мегапикселей не определяет качество снимка. А также разбираемся в технических характеристиках камер - на что действительно стоит обращать внимание при выборе нового смартфона.

Покупатель действует по принципу “Чем больше мегапикселей, тем лучше!”, не глядя на другие характеристики. И покупает раскрученный стереотип, а не качественную технику. Проведём эксперимент. Перед вами 3 образца фотографий на флагманские смартфоны 2015 года, и три типичных сцены фотосъёмки. Ответьте:

  1. Какой снимок вам кажется более качественным в каждом из случаев?
  2. Как думаете, сколько мегапикселей в камере, на которую он был снят?

Макросъёмка цветка


Съёмка в условиях плохой освещённости

Подобные тесты относят к “слепым оцениваниям”. Мы нарочно не указали производителей смартфонов, чтобы бренды не мусолили глаза. Ну, как вам картинка?

Снимки сделаны на:

  • HTC One (M9) - 20 Мп;
  • LG G4 - 16 Мп;
  • Samsung GALAXY S6 edge - 16 Мп;
  • Sony Xperia Z3+ - 20,7 Мп.

Кто ваш лидер в “слепом оценивании”? Наш - Samsung GALAXY S6 edge. Заметьте: ни один из смартфонов не справился со всеми тремя снимками “на отлично”. Потому:

Вывод 1

Большее количество мегапикселей не улучшает качество фотографий. На этом сказывается масса других факторов, включительно с мегапиксельностью.

Вывод 2

Крайне сложно найти идеальный смартфон для всех сценариев съёмки. Будьте готовы к тому, что камера, снимающая потрясающе детализированные кадры при дневном освещении, вечерние тесты завалит или плохо снимет макро, например.

Как выбрать смартфон с хорошей камерой, если количество МП - не главное?

Есть 4 ключевых характеристики и ещё тонна дополнительных. Запомните! Смартфон с хорошей камерой выбирают по:

  • размеру пикселей/матрицы;
  • апертуре;
  • системе стабилизации изображения;
  • пост-обработке снимков, собственном ПО камеры.

Что это вообще всё такое?

Пиксели и матрица

Матрица камеры смартфона - это масса светочувствительных ячеек. Вы нажимаете кнопку спуска затвора, в ячейки попадает свет - абракадабра! - получается фотография. Одинаковое количество мегапикселей не означает одинаковое количество ячеек. У тех же LG G4 и Samsung GALAXY S6 edge - по 16 Мп, и кадр состоит у обоих из 5312х2988 пикселей (модели используют сенсор Sony). А вот кадр на Huawei Mate 8 при 16 Мп - из 4608х3456 пикселей.

Матрицы камер разного размера: у LG G4 и Samsung GALAXY S6 edge - 1/2.6 дюймов, а у Huawei Mate 8 - 1/2.8 дюймов. Меньшая матрица - значит, и размер светочувствительных ячеек тоже меньше. Меньшие ячейки получают меньше света: попавший на матрицу свет быстро их заполняет, а излишки “растекаются” по соседним ячейкам. Отсюда неточности в передаче деталей и “цветовые пятна”.

Флагманы, традиционно, - смартфоны с мощной камерой. Размер сенсора у 12 Мп камеры iPhone 6s Plus - 1/3’’. В Huawei Nexus 6P , Android-флагмане Google, также встроена 12 Мп камера, но с сенсором 1/2.3’’. Меньший индекс после дроби - больший размер сенсора, а значит, теоретически, лучшая съёмка. Вот такая путаница 🙂

На заметку: У камерофона Nokia Lumia 1020 - 41 Мп и матрица размером 1/1.5″. Это практически максимум для размера сенсора в смартфонах.

Чем больше сенсор, тем лучше (чем меньше индекс после дроби, тем лучше).

Апертура

С апертурой (светочувствительностью ) - точно так же: чем меньше индекс, тем лучше. Значение f/х.y показывает сколько света может уловить камера на отведённый промежуток времени, насколько может открыться диафрагма камеры, чтобы сделать классный снимок в условиях недостаточной освещённости. Максимальные значения апертуры сегодня - f/1.7 (у Samsung GALAXY S7 и GALAXY S7 edge ) и f/1.8 (новый флагман 2016 LG G5, LG G4, смартфон LG V10, Xiaomi Mi 4 и Mi 4 LTE).

Чаще можно встретить модели с f/2.0 (Sony Xperia Z5 ) и f/2.2 (iPhone 6s Plus ), но в данном сегменте количество моделей переваливает за сотню.

Чем меньше индекс апертуры, тем лучше.

Многие из вас используют свой смартфон, как основную камеру. Это и не странно, ведь цифровые зеркальные фотоаппараты не дешевые, да и не очень мобильные, в отличии от обычных телефонов. Если вы профессионально не занимаетесь съемкой фото и видео, вам вообще не нужен такой фотоаппарат. А для повседневных фото в Instagram — и телефон сойдет.

Хорошая новость: камеры в флагманских смартфонах сегодня по качеству не сильно уступают «зеркалкам», а мода на двойные камеры вообще позволяет делать фотографии в портретном режиме неотличимыми от таковых сделанных на цифровую камеру. Более того, камеры эволюционируют и становятся лучше с каждым годом даже в бюджетных смартфонах.

Апертура — это одна из характеристик камеры в вашем смартфоне, о который вы могли слышать и видели этот параметр в характеристиках телефона. Обычно, она обозначается как f/2.0, f/1.8, f/1.7 и f/1.6. Считается, чем меньше вторая цифра в обозначении, тем лучше фотографирует камера, но так ли это на самом деле? В этой статье на Galagram рассказываем в об апертуре в современных смартфонах.

Что влияет на качество фотографии

Вы могли слышать популярную фразу: «Чем больше света получает камера, тем лучше получается фотография». И это, в какой-то степени, верно. К примеру, в цифровых камерах — чем лучше датчик и объектив, тем лучше вы получите итоговый снимок (или видео). В смартфонах действует примерно тот же принцип, но есть некоторые отличия.

Так как датчик изображения и объектив в вашем телефоне занимают совсем мало места (в отличии от зеркального фотоаппарата), камера получает меньше света, чем на обычный фотоаппарат. Некоторые производители стараются исправить эту ситуацию установкой датчика с более крупными пикселями с размерами 1.15-1.25 мкм, которые должны захватить больше света.

Широкая апертура не всегда означает максимальное качество снимка

Но светочувствительная матрица составляет лишь половину уравнения идеальной фотографии. На второй чаше весов — оптика и линзы, через которые свет и попадает на датчик изображения. Здесь и подключается в работу такое понятие, как апертура.

Что такое апертура в смартфоне

И так, что же такое апертура или диафрагма в смартфоне? Понятие апертуры определяется размером отверстия, с помощью которого свет может попасть в камеру. Этот параметр обозначается, как «f/2.0» (цифры могут быть другими) и измеряется соотношением фокусного расстояния, деленного на размер отверстия.

Таким образом, чем меньше f, тем больше размер отверстия и тем больше света попадает через оптику на датчик изображения. Как вы и сами знаете, фотография сделанная при хорошем освещении даже на бюджетный смартфон: яркая, насыщенная, отчетливая и не имеет шумов.

Еще одна полезная штука в широкой диафрагме: это более быстрый спуск затвора и более четкая и стабильная фотография, без скачков и размытых участков. Когда камера получает много света, она меньше «думает», прежде чем сделать снимок. Некоторые производители добавляют в камеры современных смартфонов технологию оптической стабилизации изображения (OIS), что позволяет добиться еще более качественных снимков при среднем и плохом освещении.

Какая диафрагма лучше: f/2.2, f/2.0 или f/1.6

Датчик изображения в смартфоне находится очень близок к системе из оптических линз, что гораздо ближе, чем у зеркальных фотоаппаратов. Это приводит к тому, что фокусное расстояние в телефоне значительно короче, чем у профессиональных камер.

Поскольку мы знаем, что в уравнении идеальной фотографии применяется фокусное расстояние, деленное на размер отверстия, это помогает объяснить, почему камеры в смартфонах имеют более широкую диафрагму, чем у традиционных «зеркалок». Несмотря на более широкую фиксированную диафрагму, камера вашего телефона не всегда лучше подходят для захвата максимального количества света.

Апертура в смартфоне отличается от диафрагмы в цифровой камере

Таким образом, чем больше апертура в телефоне — тем лучше. В идеальном случае, камера должна иметь и широкую диафрагму и сенсор с большими пикселями 1.25-1.55 мкм. Но вот в чем еще одна проблема — в телефоне диафрагма имеет фиксированный размер и не меняется, в отличии от DLSR камер, когда вы крутите объектив.

Как получается эффект глубины резкости Боке

Более широкая диафрагма в цифровой камере позволяет более качественно выделить эффект глубины резкости (Боке или размытие фона). Но ваш смартфон имеет фиксированную диафрагму и маленький датчик, который расположен близко к оптике. Поэтому добавиться эффекта Боке на телефоне значительно сложнее, особенно, когда фон находится близко к главному объекту съемки в фокусе.

Для сравнения, камера смартфона с апертурой f/2.2 позволяет добиться глубины поля, как на фотоаппарате с диафрагмой f/13 или f/14. На практике получается совсем небольшое размытие. Современные телефоны, которые умеют делать снимки с размытым фоном, обычно используют для этого специальные программные алгоритмы, а не реальную работу оптики.

Оптика и качество линз

Еще одна важная характеристика камеры смартфона — это объектив. Да, мы привыкли называть объективами большую сменную оптику для фотоаппаратов, но в вашем телефон он тоже есть. Пускай объектив в смартфоне и гораздо меньше традиционных, но он тоже состоит из оптических линз. Если объектив грязный или линзы имеют плохую прозрачность, матрица получит меньше света в итоге.

Качество объектива становится особенно важным у смартфонов в широкими апертурами, вроде f/1.6. Ведь на более широком отверстии становится сложнее сфокусировать весь свет на датчике изображения. Здесь и появляются так называемые абразивные искажения .

Телефоны с широкой диафрагмой по определению менее сфокусированы на определенной части сцены, чем устройства с более закрытой диафрагмой и, следовательно, более подвержены проблемам и фокусировкой и искажениями.

Абразивное искажение проявляется во множестве эффектов. Они включают следующие моменты: сферическую аберрацию (уменьшенная прозрачности и резкости), размытость фотографии, кривизна поля (потеря фокуса по краям), искажение (выпуклость изображения или вогнутость) и хроматическая аберрация (несфокусированные цвета и искажение белого цвета).

Объективы в смартфонах построены из нескольких корректирующих групп линз, которые предназначенных для точного фокусирования света и уменьшения этих аберраций. Более дешевые объективы имеют меньше линз и, следовательно, более подвержены проблемам. Материалы оптики также играют важную роль.

О качестве линз сложно судить по их спецификациям, а многие производители телефонов вообще не упоминают об этом. К счастью, некоторые известные оптические компании сейчас активно интегрируются в камеры смартфонов, в частности мы с вами знаем о таких случаях: Leica и Huawei, Carl Zeiss и Nokia HMD Global. Компания LG тоже внедрила новый объектив «Crystal Clear Lens» с 6 линзами во флагман V30 для обработки более широкой диафрагмы камеры.

Выводы: на что обратить внимание

Надеемся, что после прочтения этой статьи вы поняли, что такое апертура. Если подытожить все выше сказанное, широкая диафрагма не всегда означает лучшее качество снимков. На итоговую картинку влияет еще и размер матрицы, количество света, которое попадает на датчик изображения, софт и конечно же оптика камеры в вашем смартфоне. Залог хорошей камеры простой, это следующие параметры:

  • широкая апертура
  • большие пиксели и размер матрицы
  • слаженная работа софта и железа
  • качественная оптическая система

Поэтому, когда вы выбираете себе смартфон, лучше протестировать его камеру вручную перед покупкой, чтобы убедиться в его реальном качестве снимков. Не стоит зацикливаться только на цифрах f/1.8 и f/1.6, ведь у качественной камеры не только широкая апертура, но и все остальные системы работают качественно в комплекте.