Судебные споры

Атомный двигатель. Технические подробности: ракета с ядерным двигателем

Безопасный способ использования ядерной энергии в космосе изобретен еще в СССР, и сейчас ведутся работы по созданию на его основе ядерной установки, сообщил генеральный директор Государственного научного центра РФ «Исследовательский центр имени Келдыша», академик Анатолий Коротеев.

«Сейчас институт активно в этом направлении работает в большой кооперации предприятий Роскосмоса и Росатома. И я надеюсь, что в установленные сроки мы здесь получим положительный эффект», – заявил А.Коротеев на ежегодных «Королевских чтениях» в МГТУ имени Баумана во вторник.

По его словам, «Центр имени Келдыша» изобрел схему безопасного использования ядерной энергии в космическом пространстве, которая позволяет обойтись без выбросов и работает по замкнутой схеме, что делает установку безопасной даже в случае отказа и падения ее на Землю.

«Эта схема в значительной степени снижает риск использования ядерной энергии, особенно с учетом того, что одним из основополагающих моментов является эксплуатация этой системы на орбитах выше 800-1000 км. Тогда, в случае отказа, время «высвечивания» такое, что оно делает безопасным возвращение через большой промежуток времени этих элементов на Землю», — уточнил ученый.

А.Коротеев сообщил, что ранее в СССР уже применялись космические аппараты, работающие на ядерной энергии, но они были потенциально опасными для Земли, и впоследствии от них пришлось отказаться. «СССР использовал ядерную энергию в космосе. В космосе было 34 космических аппарата с ядерной энергией, из которых 32 советских и два американских», — напомнил академик.

По его словам, разрабатываемая в России ядерная установка будет облегчена за счет использования бескаркасной системы охлаждения, при которой охладитель ядерного реактора будет циркулировать непосредственно в космическом пространстве без системы трубопроводов.

А ведь еще еще в начале 1960-х годов конструкторы рассматривали ядерные ракетные двигатели как единственную реальную альтернативу для путешествия к другим планетам Солнечной системы. Давайте узнаем историю этого вопроса.

Соревнование между СССР и США, в том числе и в космосе, шло в это время полным ходом, инженеры и ученые вступили в гонку по созданию ЯРД, военные тоже поддержали вначале проект ядерного ракетного двигателя. Поначалу задача казалась очень простой - нужно только сделать реактор, рассчитанный на охлаждение водородом, а не водой, пристроить к нему сопло, и - вперед, к Марсу! Американцы собирались на Марс лет через десять после Луны и не могли даже помыслить о том, что астронавты когда-нибудь его достигнут без ядерных двигателей.

Американцы очень быстро построили первый реактор-прототип и уже в июле 1959 года провели его испытания (они назывались KIWI-A). Эти испытания всего лишь показали, что реактор можно использовать для нагрева водорода. Конструкция реактора - с незащищенным топливом из оксида урана - не годилась для высоких температур, и водород нагревался всего до полутора тысяч градусов.

По мере накопления опыта конструкция реакторов для ядерного ракетного двигателя - ЯРД - усложнялась. Оксид урана был заменен на более термостойкий карбид, вдобавок его стали покрывать карбидом ниобия, но при попытках достигнуть проектной температуры реактор начинал разрушаться. Больше того, даже при отсутствии макроскопических разрушений происходила диффузия уранового топлива в охлаждающий водород, и потеря массы достигала 20% за пять часов работы реактора. Так и не был найден материал, способный работать при 2700-3000 0 С и противостоять разрушению горячим водородом.

Поэтому американцы приняли решение пожертвовать эффективностью и в проект летного двигателя заложили удельный импульс (тяга в килограммах силы, достигаемая при ежесекундном выбросе одного килограмма массы рабочего тела; единица измерений - секунда). 860 секунд. Это вдвое превышало соответствующий показатель кислород-водородных двигателей того времени. Но когда у американцев сталочто-то получаться, интерес к пилотируемым полетам уже упал, программа «Аполлон» была свернута, а в 1973 году окончательно закрыли проект «NERVA» (так назвали двигатель для пилотируемой экспедиции на Марс). Выиграв лунную гонку, американцы не захотели устраивать марсианскую.

Но уроки, извлеченные из десятка построенных реакторов и нескольких десятков проведенных испытаний, состояли в том, что американские инженеры слишком увлеклись натурными ядерными испытаниями, вместо того чтобы отрабатывать ключевые элементы без вовлечения ядерной технологии там, где этого можно избежать. А где нельзя - использовать стенды меньшего размера. Американцы почти все реакторы «гоняли» на полной мощности, но не смогли добраться до проектной температуры водорода - реактор начинал разрушаться раньше. Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд. - примерно 5% стоимости лунной программы.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД (реактивный и импульсный). Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

В первой половине 1960-х годов советские инженеры рассматривали экспедицию на Марс как логичное продолжение разворачиваемой в то время программы полета человека на Луну. На волне воодушевления, вызванного приоритетом СССР в космосе, даже такие чрезвычайно сложные проблемы оценивались с повышенным оптимизмом.

Одной из самых главных проблем была (и остается по сей день) проблема энергодвигательного обеспечения. Было ясно, что ЖРД, даже перспективные кислородно-водородные, если и могут в принципе обеспечить пилотируемый полет на Марс, то только при огромных стартовых массах межпланетного комплекса, с большим количеством стыковок отдельных блоков на монтажной околоземной орбите.

В поисках оптимальных решений ученые и инженеры обратились к ядерной энергии, постепенно присматриваясь к этой проблеме.

В СССР исследования по проблемам использования энергии ядра в ракетно-космической технике начались во второй половине 50-х годов, еще до запуска первых ИСЗ. В нескольких научно-исследовательских институтах возникли небольшие группы энтузиастов, поставивших целью создание ракетных и космических ядерных двигателей и энергоустановок.

Конструкторы ОКБ-11 С.П.Королева совместно со специалистами НИИ-12 под руководством В.Я.Лихушина рассматривали несколько вариантов космических и боевых (!) ракет, оснащенных ядерными ракетными двигателями (ЯРД). В качестве рабочего тела оценивались вода и сжиженные газы – водород, аммиак и метан.

Перспектива была многообещающей; постепенно работы нашли понимание и финансовое обеспечение в правительстве СССР.

Уже самый первый анализ показал, что среди множества возможных схем космических ядерных энергодвигательных установок (ЯЭДУ) наибольшие перспективы имеют три:

  • с твердофазным ядерным реактором;
  • с газофазным ядерным реактором;
  • электроядерные ракетные ЭДУ.

Схемы отличались принципиально; по каждой из них наметили несколько вариантов для развертывания теоретических и экспериментальных работ.

Наиболее близким к реализации представлялся твердофазный ЯРД. Стимулом к развертыванию работ в этом направлении послужили аналогичные разработки, проводившиеся в США с 1955 г. по программе ROVER, а также перспективы (как тогда казалось) создания отечественного межконтинентального пилотируемого самолета-бомбардировщика с ЯЭДУ.

Твердофазный ЯРД работает как прямоточный двигатель. Жидкий водород поступает в сопловую часть, охлаждает корпус реактора, тепловыделяющие сборки (ТВС), замедлитель, а далее разворачивается и попадает внутрь ТВС, где нагревается до 3000 К и выбрасывается в сопло, ускоряясь до высоких скоростей.

Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от «сердца» двигателя – ядерного реактора и определялись, прежде всего, его «начинкой» – активной зоной.

Разработчики первых американских (и советских) ЯРД стояли за гомогенный реактор с графитовой активной зоной. Несколько особняком шли работы поисковой группы по новым видам высокотемпературного топлива, созданной в 1958 г. в лаборатории №21 (руководитель – Г.А.Меерсон) НИИ-93 (директор – А.А.Бочвар). Под влиянием развернутых в то время работ по реактору для самолета (соты из оксида бериллия) в группе предприняли попытки (опять же поисковые) получить материалы на основе карбида кремния и циркония, стойкие к окислению.

По воспоминаниям Р.Б. Котельникова, сотрудника НИИ-9, весной 1958 г. у руководителя лаборатории №21 состоялась встреча с представителем НИИ-1 В.Н.Богиным. Он рассказал, что в качестве основного материала для тепловыделяющих элементов (твэлов) реактора в их институте (кстати, в то время головном в ракетной отрасли; начальник института В.Я.Лихушин, научный руководитель М.В.Келдыш, начальник лаборатории В.М.Иевлев) применяют графит. В частности, уже научились наносить на образцы покрытия для защиты от водорода. Со стороны НИИ-9 было предложено рассмотреть возможность применения карбидов UC-ZrC как основы твэлов.

Спустя короткое время появился еще один заказчик на твэлы – ОКБ М.М.Бондарюка, которое идейно конкурировало с НИИ-1. Если последний стоял за многоканальную цельноблочную конструкцию, то ОКБ М.М.Бондарюка взяло курс на разборный пластинчатый вариант, ориентируясь на легкость механообработки графита и не смущаясь сложностью деталей – пластин миллиметровой толщины с такими же ребрышками. Карбиды обрабатываются гораздо сложнее; в то время из них невозможно было изготовить такие детали, как многоканальные блоки и пластины. Стала ясна необходимость создания какой-то иной конструкции, соответствующей специфике карбидов.

В конце 1959 г. – начале 1960 г. было найдено решающее условие для твэлов ЯРД – стержневой тип сердечника, удовлетворяющий заказчиков – НИИ Лихушина и ОКБ Бондарюка. Как основную для них обосновали схему гетерогенного реактора на тепловых нейтронах; ее основные достоинства (по сравнению с альтернативным гомогенным графитовым реактором) таковы:

  • возможно использовать низкотемпературный водородосодержащий замедлитель, что позволяет создать ЯРД с высоким массовым совершенством;
  • возможно разработать малоразмерный прототип ЯРД тягой порядка 30…50 кН с высокой степенью преемственности для двигателей и ЯЭДУ следующего поколения;
  • возможно широко применять в твэлах и других деталях конструкции реактора тугоплавкие карбиды, что позволяет максимально увеличить температуру нагрева рабочего тела и обеспечить повышенный удельный импульс;
  • возможно поэлементно автономно отработать основные узлы и системы ЯРД (ЯЭДУ), такие как тепловыделяющие сборки, замедлитель, отражатель, турбонасосный агрегат (ТНА), систему управления, сопло и др.; это позволяет проводить отработку параллельно, сокращая объем дорогостоящих комплексных испытаний энергоустановки в целом.

Примерно в 1962–1963 гг. работы по проблеме ЯРД возглавил НИИ-1, имеющий мощную экспериментальную базу и прекрасные кадры. Им не хватало только технологии по урану, а также ядерщиков. С привлечением НИИ-9, а потом и ФЭИ сложилась кооперация, которая взяла за идеологию создание минимального по тяге (около 3.6 тс), но «настоящего» летнего двигателя с «прямоточным» реактором ИР-100 (испытательный или исследовательский, мощностью 100 МВт, главный конструктор – Ю.А.Трескин). Поддержанный постановлениями правительства, НИИ-1 строил электродуговые стенды, неизменно поражавшие воображение – десятки баллонов по 6–8 м высоты, громадные горизонтальные камеры мощностью свыше 80 кВт, броневые стекла в боксах. Участников совещаний вдохновляли красочные плакаты со схемами полетов к Луне, Марсу и т.д. Предполагалось, что в процессе создания и испытаний ЯРД будут решены вопросы конструкторского, технологического, физического плана.

По мнению Р.Котельникова, дело, к сожалению, осложнялось не очень ясной позицией ракетчиков. Министерство общего машиностроения (МОМ) с большими трудностями финансировало программу испытаний и строительство стендовой базы. Казалось, что МОМ не имеет желания или возможностей продвигать программу ЯРД.

К концу 1960-х годов поддержка конкурентов НИИ-1 – ИАЭ, ПНИТИ и НИИ-8 – была значительно серьезнее. Министерство среднего машиностроения («атомщики») активно поддерживало их разработку; «петлевой» реактор ИВГ (с активной зоной и сборками центрального канала стержневого типа разработки НИИ-9) в итоге к началу 70-х годов вышел на первый план; в нем начались испытания ТВС.

Сейчас, спустя 30 лет, представляется, что линия ИАЭ была более правильной: сначала – надежная «земная» петля – отработка твэлов и сборок, а потом создание летного ЯРД нужной мощности. Но тогда казалось, что можно очень быстро сделать настоящий двигатель, пусть маленький… Однако, поскольку жизнь показала, что объективной (или даже субъективной) потребности в таком двигателе не было (к этому можно еще прибавить, что серьезность негативных моментов этого направления, например международных соглашений о ядерных устройствах в космосе, поначалу сильно недооценивалась), то соответственно более правильной и продуктивной оказалась фундаментальная программа, цели которой не были узкими и конкретными.

1 июля 1965 г. был рассмотрен эскизный проект реактора ИР-20-100. Кульминацией стал выпуск техпроекта тепловыделяющих сборок ИР-100 (1967 г.), состоящих из 100 стержней (UC-ZrC-NbC и UC-ZrC-C для входных секций и UC-ZrC-NbC для выходной). НИИ-9 был готов к выпуску крупной партии стержневых элементов будущей активной зоны ИР-100. Проект был весьма прогрессивен: спустя примерно 10 лет практически без существенных изменений он был использован в зоне аппарата 11Б91, и даже сейчас все основные решения сохраняются в сборках подобных реакторов другого назначения, уже совсем с другой степенью расчетного и экспериментального обоснования.

«Ракетная» часть первого отечественного ядерного РД-0410 была разработана в воронежском Конструкторском бюро химической автоматики (КБХА), «реакторная» (нейтронный реактор и вопросы радиационной безопасности) – Институтом физики и энергии (Обнинск) и Курчатовским институтом атомной энергии.

КБХА известно своими работами в области ЖРД для баллистических ракет, КА и РН. Здесь было разработано около 60 образцов, 30 из которых доведено до серийного производства. В КБХА к 1986 г. был создан и самый мощный в стране однокамерный кислородно-водородный двигатель РД-0120 тягой 200 тс, использованный в качестве маршевого на второй ступени комплекса «Энергия-Буран». Ядерный РД-0410 создавался совместно со многими оборонными предприятиями, КБ и НИИ.

Согласно принятой концепции, жидкие водород и гексан (ингибирующая присадка, снижающая наводораживание карбидов и увеличивающая ресурс твэлов) подавались с помощью ТНА в гетерогенный реактор на тепловых нейтронах с ТВС, окруженными замедлителем из гидрида циркония. Их оболочки охлаждались водородом. Отражатель имел приводы для поворота поглотительных элементов (цилиндров из карбида бора). ТНА включал трехступенчатый центробежный насос и одноступенчатую осевую турбину.

За пять лет, с 1966 по 1971 гг., были созданы основы технологии реакторов-двигателей, а еще через несколько лет была введена в действие мощная экспериментальная база под названием «экспедиция №10», впоследствии опытная экспедиция НПО «Луч» на Семипалатинском ядерном полигоне.
Особые трудности встретились при испытаниях. Обычные стенды для запуска полномасштабного ЯРД использовать было невозможно из-за радиации. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а «ракетной части» – в НИИхиммаш (Загорск, ныне Сергиев Посад).

Для изучения внутрикамерных процессов было выполнено более 250 испытаний на 30 «холодных двигателях» (без реактора). В качестве модельного нагревательного элемента использовалась камера сгорания кислородно-водородного ЖРД 11Д56 разработки КБхиммаш (главный конструктор – А.М.Исаев). Максимальное время наработки составило 13 тыс сек при объявленном ресурсе в 3600 сек.

Для испытаний реактора на Семипалатинском полигоне были построены две специальные шахты с подземными служебными помещениями. Одна из шахт соединялась с подземным резервуаром для сжатого газообразного водорода. От использования жидкого водорода отказались из финансовых соображений.

В 1976 г. был проведен первый энергетический пуск реактора ИВГ-1. Параллельно в ОЭ создавался стенд для испытания «двигательного» варианта реактора ИР-100, и через несколько лет были проведены его испытания на разной мощности (один из ИР-100 впоследствии был переоборудован в материаловедческий исследовательский реактор малой мощности, который работает до сих пор).

Перед экспериментальным запуском реактор опускался в шахту с помощью установленного на поверхности козлового крана. После запуска реактора водород поступал снизу в «котел», раскалялся до 3000 К и огненной струей вырывался из шахты наружу. Несмотря на незначительную радиоактивность истекающих газов, в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель вел из безопасной зоны сначала к одному бункеру, а из него – к другому, находящемуся возле шахт. По этим своеобразным «коридорам» и передвигались специалисты.

Иевлев Виталий Михайлович

Результаты экспериментов, проведенных с реактором в 1978– 1981 гг., подтвердили правильность конструктивных решений. В принципе ЯРД был создан. Оставалось соединить две части и провести комплексные испытания.

Примерно в 1985 году РД-0410 (по другой системе обозначений 11Б91) мог бы совершить своей первый космический полет. Но для этого нужно было разработать разгонный блок на его основе. К сожалению, эта работа не была заказана ни одному космическому КБ, и тому есть множество причин. Главная из них - так называемая Перестройка. Необдуманные шаги привели к тому, что вся космическая отрасль мгновенно оказалась «в опале» и в 1988 году работы по ЯРД в СССР (тогда еще существовал СССР) были прекращены. Произошло это не из-за технических проблем, а по сиюминутным идеологическим соображениям.А в 1990-м году умер идейный вдохновитель программ ЯРД в СССР Виталий Михайлович Иевлев…

Каких же основных успехов достигли разработчики, создавая ЯРД схемы «А»?

Проведено более полутора десятков натурных испытаний на реакторе ИВГ-1, и получены следующие результаты: максимальная температура водорода – 3100 К, удельный импульс – 925 сек, удельное тепловыделение до 10 МВт/л, общий ресурс более 4000 сек при последовательных 10 включениях реактора. Эти итоги значительно превосходят американские достижения на графитовых зонах.

Следует заметить, что за все время испытаний ЯРД, несмотря на открытый выхлоп, выход радиоактивных осколков деления не превышал допустимых норм ни на полигоне, ни за его пределами и не был зарегистрирован на территории сопредельных государств.

Важнейшим результатом работы явилось создание отечественной технологии таких реакторов, получение новых тугоплавких материалов, а факт создания реактора-двигателя породил ряд новых проектов и идей.

Хотя дальнейшее развитие таких ЯРД было приостановлено, полученные достижения являются уникальными не только в нашей стране, но и в мире. Это неоднократно подтверждено в последние годы на международных симпозиумах по космической энергетике, а также на встречах отечественных и американских специалистов (на последних было признано, что реактор-стенд ИВГ – единственный на сегодня в мире работоспособный испытательный аппарат, который может сыграть важную роль в экспериментальной отработке ТВС и атомных ЭДУ).

источники
http://newsreaders.ru
http://marsiada.ru
http://vpk-news.ru/news/14241

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Каждые несколько лет какой-нибудь
новый подполковник открывает для себя «Плутон».
После этого он звонит в лабораторию,
чтобы узнать дальнейшую судьбу ядерного ПВРД.

Модная нынче тема, но мне представляется, что гораздо интереснее ядерный прямоточный воздушно-реактивный двигатель, ведь ему не надо таскать с собой рабочее тело.
Предполагаю, что в послании Президента речь шла именно о нем, но почему-то все сегодня начали постить про ЯРД???
Соберу-ка я тут все в одном месте. Прелюбопытные мысли, скажу я вам, появляются, когда вчитаешься в тему. И очень неудобные вопросы.

Прямоточный воздушно-реактивный двигатель (ПВРД; англоязычный термин — ramjet, от ram — таран) — реактивный двигатель, является самым простым в классе воздушно-реактивных двигателей (ВРД) по устройству. Относится к типу ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи, истекающей из сопла. Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха. ПВРД неработоспособен при низких скоростях полёта, тем более — при нулевой скорости, для вывода его на рабочую мощность необходим тот или иной ускоритель.

Во второй половине 1950-х годов, в эпоху холодной войны, в США и СССР разрабатывались проекты ПВРД с ядерным реактором.


Автор фото: Leicht modifiziert aus http://en.wikipedia.org/wiki/Image:Pluto1955.jpg

Источником энергии этих ПВРД (в отличие от остальных ВРД) является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором в камере нагрева рабочего тела. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждая его, нагревается сам до рабочей температуры (около 3000 К), а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных химических ЖРД. Возможное назначения летательного аппарата с таким двигателем:
- межконтинентальная крылатая ракета-носитель ядерного заряда;
- одноступенчатый воздушно-космический самолёт.

В обеих странах были созданы компактные малоресурсные ядерные реакторы, которые вписывались в габариты большой ракеты. В США по программам исследований ядерного ПВРД «Pluto» и «Tory» в 1964 году были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC» (режим полной мощности 513 МВт в течение пяти минут с тягой 156 кН). Лётные испытания не проводились, программа была закрыта в июле 1964 года. Одна из причин закрытия программы — совершенствование конструкции баллистических ракет с химическими ракетными двигателями, которые вполне обеспечили решение боевых задач без применения схем с сравнительно дорогостоящими ядерными ПВРД.
Про вторую в российских источниках сейчас не принято говорить...

В проекте «Плутон» должна была использоваться тактика полета на низких высотах. Данная тактика обеспечивала скрытность от радаров системы ПВО СССР.
Для достижения скорости, на которой работал бы прямоточный воздушно-реактивный двигатель, «Плутон» должен был с земли запускаться при помощи пакета обычных ракетных ускорителей. Запуск ядерного реактора начинался только после того, как «Плутон» достигал высоты крейсерского полета и достаточно удалялся от населенных районов. Ядерный двигатель, дающий практически неограниченный радиус действия, позволял ракете летать над океаном кругами в ожидании приказа перехода на сверхзвуковую скорость к цели в СССР.


Эскизный проект SLAM

Было принято решение провести статическое испытание полномасштабного реактора, который предназначался для прямоточного двигателя.
Поскольку после запуска реактор «Плутона» становился чрезвычайно радиоактивным, его доставка на место испытаний осуществлялась по специально построенной полностью автоматизированной железнодорожной линии. По данной линии реактор перемещаться на расстояние примерно двух миль, которые разделяли стенд статических испытаний и массивное «демонтажное» здание. В здании «горячий» реактор демонтировался для проведения обследования при помощи оборудования, управляемого дистанционно. Ученые из Ливермора наблюдали за процессом испытаний с помощью телевизионной системы, которая размещалась в жестяном ангаре далеко от испытательного стенда. На всякий случай ангар оборудовался противорадиационным укрытием с двухнедельным запасом пищи и воды.
Только чтобы обеспечить поставки бетона необходимого для строительства стен демонтажного здания (толщина составляла от шести до восьми футов), правительство Соединенных Штатов приобрело целую шахту.
Миллионы фунтов сжатого воздуха хранились в трубах, использующихся в нефтедобыче, общей протяженностью 25 миль. Данный сжатый воздух предполагалось использовать для имитации условий, в которых прямоточный двигатель оказывается во время полета на крейсерской скорости.
Чтобы обеспечить в системе высокое воздушное давление, лаборатория позаимствовала с базы подводных лодок (Гротон, шт. Коннектикут) гигантские компрессоры.
Для проведения теста, во время которого установка работала на полной мощности в течение пяти минут, требовалось прогонять тонну воздуха через стальные цистерны, которые заполнялись более чем 14 млн. стальных шариков, диаметром 4 см. Данные цистерны нагревались до 730 градусов при помощи нагревательных элементов, в которых сжигали нефть.


Установленный на железнодорожной платформе, Тори-2С готов к успешным испытаниям. Май 1964 года

14 мая 1961 г. инженеры и ученые, находящиеся в ангаре, откуда управлялся эксперимент, задержали дыхание — первый в мире ядерный прямоточный реактивный двигатель, смонтированный на ярко-красной железнодорожной платформе, возвестил о своем рождении громким ревом. Тори-2А запустили всего на несколько секунд, во время которых он не развивал своей номинальной мощности. Однако считалось, что тест являлся успешным. Самым важным стало то, что реактор не воспламенился, чего крайне опасались некоторые представители комитета по атомной энергетике. Почти сразу после испытаний Меркл приступил к работам по созданию второго реактора «Тори», который должен был иметь большую мощность при меньшей массе.
Работы по Тори-2B дальше чертежной доски не продвинулись. Вместо него ливерморцы сразу построили Тори-2C, который нарушил безмолвие пустыни спустя три года после испытаний первого реактора. Спустя неделю данный реактор был вновь запущен и проработал на полной мощности (513 мегаватт) в течение пяти минут. Оказалась что радиоактивность выхлопа значительно меньше ожидаемой. На этих испытаниях также присутствовали генералы ВВС и чиновники из комитета по атомной энергетике.

В это время заказчиков из Пентагона, финансировавших проект «Плутон», начали одолевать сомнения. Поскольку ракета запускалась с территории США и летела над территорией американских союзников на малой высоте, чтобы избежать обнаружения системами ПВО СССР, некоторые военные стратеги задумались — а не будет ли ракета представлять для союзников угрозу? Еще до того как ракета «Плутон» сбросит бомбы на противника, она сначала оглушит, раздавит и даже облучит союзников. (Ожидалось, что от Плутона, пролетающего над головой, уровень шума на земле будет составлять около 150 децибел. Для сравнения — уровень шума ракеты, отправившей американцев на Луну (Сатурн-5), на полной тяге составила 200 децибел). Разумеется, разорванные барабанные перепонки были бы наименьшей проблемой, если бы вы оказались под пролетающим над вашей головой обнаженным реактором, который изжарил бы вас как цыпленка гамма- и нейтронным излучением.


Тори-2C

Хотя создатели ракеты утверждали, что «Плутон» изначально по своей сути также неуловим, военные аналитики выражали недоумение — как нечто такое шумное, горячее, большое и радиоактивное может оставаться незамеченным на протяжении времени, которое необходимо для выполнения задачи. В это же время военно-воздушные силы США уже начали развертывать баллистические ракеты «Атлас» и «Титан», которые были способны достичь целей на несколько часов раньше летающего реактора, и противоракетная система СССР, страх перед которой стал основным толчком для создания «Плутона», так и не стала для баллистических ракет помехой, несмотря на успешно проведенные испытательные перехваты. Критики проекта придумали собственную расшифровку аббревиатуры SLAM — slow, low, and messy — медленно, низко и грязно. После успешных испытаний ракеты «Полярис» флот, изначально проявлявший интерес к использованию ракет для пусков с подводных лодок или кораблей, также начал покидать проект. И, наконец, стоимость каждой ракеты составляла 50 миллионов долларов. Внезапно «Плутон» стал технологией, которой нельзя найти приложения, оружием, у которого не было подходящих целей.

Однако последним гвоздем в гроб «Плутона» стал всего один вопрос. Он настолько обманчиво простой, что можно извинить ливерморцев за то, что они ему сознательно не уделили внимания. «Где проводить летные испытания реактора? Как убедить людей в том, что во время полета ракета не потеряет управление и не полетит над Лос-Анджелесом или Лас-Вегасом на малой высоте?» — спрашивал физик ливерморской лаборатории Джим Хэдли, который до самого конца работал над проектом «Плутон». В настоящее время он занимается обнаружением ядерных испытаний, которые проводятся в других странах, для подразделения Z. По признанию самого Хэдли, не было никаких гарантий, что ракета не выйдет из под контроля и не превратится в летающий Чернобыль.
Было предложено несколько вариантов решения данной проблемы. Одно из них - запуск Плутона около острова Уэйк, где ракета летала бы, нарезая восьмерки над принадлежащей Соединенным Штатам частью океана. «Горячие» ракеты предполагалась затапливать на глубине 7 километров в океане. Однако даже тогда, когда комиссия по атомной энергетике склоняла мнение людей думать о радиации как о безграничном источнике энергии, предложения сбрасывать множество загрязненных радиацией ракет в океан было вполне достаточно, чтобы работы приостановили.
1 июля 1964 г, спустя семь лет и шесть месяцев с начала работ, проект «Плутон» закрыли комиссия по атомной энергетике и военно-воздушные силы.

По словам Хэдли, каждые несколько лет какой-нибудь новый подполковник военно-воздушных сил открывает для себя «Плутон». После этого он звонит в лабораторию, чтобы узнать дальнейшую судьбу ядерного ПВРД. Энтузиазм у подполковников пропадает сразу же после того как Хэдли рассказывает о проблемах с радиацией и летными испытаниями. Больше одного раза никто Хэдли не звонил.
Если кого-то захочет вернуть к жизни «Плутон», то, возможно, ему удастся найти несколько новобранцев в Ливерморе. Однако их много не будет. Идею того, что могло стать адским безумным оружием, лучше оставить в прошлом.

Технические характеристики ракеты SLAM:
Диаметр — 1500 мм.
Длинна — 20000 мм.
Масса — 20 тонн.
Радиус действия — не ограниченный (теоретически).
Скорость на уровне моря — 3 Маха.
Вооружение — 16 термоядерных бомб (мощность каждой 1 мегатонна).
Двигатель — ядерный реактор (мощность 600 мегаватт).
Система наведения — инерциальная + TERCOM.
Максимальная температура обшивки — 540 градусов Цельсия.
Материал планера — высокотемпературная, нержавеющая сталь Рене 41.
Толщина обшивки — 4 — 10 мм.

Тем не менее, ядерный ПВРД перспективен как двигательная система для одноступенчатых воздушно-космических самолётов и скоростной межконтинентальной тяжёлой транспортной авиации. Этому способствует возможность создания ядерного ПВРД, способного работать на дозвуковых и нулевых скоростях полёта в режиме ракетного двигателя, используя бортовые запасы рабочего тела. То есть, например, воздушно-космический самолёт с ядерным ПВРД стартует (в том числе взлетает), подавая в двигатели рабочее тело из бортовых (или подвесных) баков и, уже достигнув скоростей от М = 1, переходит на использование атмосферного воздуха.

Как заявил президент РФ В. В. Путин, в начале 2018 года «состоялся успешный пуск крылатой ракеты с ядерной энергоустановкой». При этом, по его заявлению, дальность такой крылатой ракеты "неограниченная".

Интересно, а в каком регионе проводились испытания и почему их проушехлопили соответствующие службы мониторинга за ядерными испытаниями. Или все-таки осенний выброс рутения-106 в атмосфере как-то связан с этими испытаниями? Т.е. челябинцев не только присыпали рутением, но еще и поджарили?
А куда упала эта ракета можно узнать? Проще говоря, где расколотили ядерный реактор? На каком полигоне? На Новой Земле?

**************************************** ********************

А теперь немного почитаем про ядерные ракетные двигатели, хотя это совсем другая история

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают жидкостными (нагрев жидкого рабочего тела в нагревательной камере от ядерного реактора и вывод газа через сопло) и импульсно-взрывными (ядерные взрывы малой мощности при равном промежутке времени).
Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твёрдофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).


Ист. https://commons.wikimedia.org/w/index.php?curid=1822546

РД-0410 (Индекс ГРАУ — 11Б91, известен также как «Иргит» и «ИР-100») — первый и единственный советский ядерный ракетный двигатель 1947-78 гг. Был разработан в конструкторском бюро «Химавтоматика», Воронеж.
В РД-0410 был применён гетерогенный реактор на тепловых нейтронах. Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проект ом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где нагревался при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода. Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Внереакторные узлы были отработаны полностью.

********************************

А это американский ядерный ракетный двигатель. Его схема была на заглавной картинке


Автор: NASA - Great Images in NASA Description, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=6462378

NERVA (англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и НАСА по созданию ядерного ракетного двигателя (ЯРД), продолжавшаяся до 1972 года.
NERVA продемонстрировал, что ЯРД вполне работоспособен и подходит для исследования космоса, и в конце 1968 года SNPO подтвердил, что новейшая модификация NERVA, NRX/XE, отвечает требованиям для пилотируемого полета на Марс. Хотя двигатели NERVA были построены и испытаны в максимально возможной степени и считались готовыми к установке на космический аппарат, бо́льшая часть американской космической программы была отменена администрацией президента Никсона.

NERVA была оценена AEC, SNPO и НАСА как высокоуспешная программа, достигшая или даже превысившая свои цели. Главная цель программы заключалась в «создании технической базы для систем ядерных ракетных двигателей, которые будут использоваться в разработке и развитии двигательных установок для космических миссий». Практически все космические проекты, использующие ЯРД, основаны на конструкциях NERVA NRX или Pewee.

Марсианские миссии стали причиной упадка NERVA. Члены Конгресса из обеих политических партий решили, что пилотируемый полет на Марс будет молчаливым обязательством для Соединенных Штатов в течение десятилетий поддерживать дорогостоящую космическую гонку. Ежегодно программа RIFT задерживалась и цели NERVA усложнялись. В конце концов, хотя двигатель NERVA прошёл много успешных испытаний и имел мощную поддержку Конгресса, он никогда не покидал Землю.

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе.

Советские и американские ученые разрабатывали ракетные двигатели на ядерном топливе с середины XX века. Дальше прототипов и единичных испытаний эти разработки не продвинулись, но сейчас единственная ракетная двигательная установка, которая использует ядерную энергию, создается в России. «Реактор» изучил историю попыток внедрения ядерных ракетных двигателей.

Когда человечество только начало покорять космос, перед учеными встала задача энергообеспечения космических аппаратов. Исследователи обратили внимание на возможность использования ядерной энергии в космосе, создав концепцию ядерного ракетного двигателя. Такой двигатель должен был использовать энергию деления или синтеза ядер для создания реактивной тяги.

В СССР уже в 1947 году начались работы по созданию ядерного ракетного двигателя. В 1953 году советские специалисты отмечали, что «использование атомной энергии позволит получить практически неограниченные дальности и резко снизить полетный вес ракет» (цитата по изданию «Ядерные ракетные двигатели » под редакцией А.С. Коротеева, М, 2001). Тогда двигательные установки на ядерной энергии предназначались, в первую очередь, для оснащения баллистических ракет, поэтому интерес правительства к разработкам был большим. Президент США Джон Кеннеди в 1961 году назвал национальную программу по созданию ракеты с ядерным ракетным двигателем (Project Rover) одним из четырех приоритетных направлений в завоевании космоса.

Реактор KIWI, 1959 год. Фото: NASA.

В конце 1950-х американские ученые создали реакторы KIWI. Они много раз были испытаны, разработчики сделали большое количество модификаций. Часто при испытаниях происходили неудачи, например, однажды произошло разрушение активной зоны двигателя и обнаружилась большая утечка водорода.

В начале 1960-х как в США, так и в СССР были созданы предпосылки для реализации планов по созданию ядерных ракетных двигателей, но каждая страна шла своей дорогой. США создавали много конструкций твердофазных реакторов для таких двигателей и испытывали их на открытых стендах. СССР вел отработку тепловыделяющей сборки и других элементов двигателя, готовя производственную, испытательную, кадровую базу для более широкого «наступления».

Схема ЯРД NERVA. Иллюстрация: NASA.

В США уже в 1962 году президент Кеннеди заявил, что «ядерная ракета не будет применяться в первых полетах на Луну», поэтому стоит направлять средства, выделяемые на освоение космоса, на другие разработки. На рубеже 1960-1970-х были испытаны еще два реактора (PEWEE в 1968 году и NF-1 в 1972 году) в рамках программы NERVA . Но финансирование было сосредоточено на лунной программе, поэтому программа США по созданию ядерных двигателей сокращалась в объеме, и в 1972 году была закрыта.

Фильм NASA про ядерный реактивный двигатель NERVA.

В Советском Союзе разработки ядерных ракетных двигателей продолжались до 1970-х годов, а руководила ими известнейшая ныне триада отечественных ученых-академиков: Мстислав Келдыш, Игорь Курчатов и . Они оценивали возможности создания и применения ракет с ядерными двигателями достаточно оптимистично. Казалось, что вот-вот, и СССР запустит такую ракету. Прошли огневые испытания на Семипалатинском полигоне - в 1978 году состоялся энергетический пуск первого реактора ядерного ракетного двигателя 11Б91 (или РД-0410), потом еще две серии испытаний - второго и третьего аппаратов 11Б91-ИР-100. Это были первые и последние советские ядерно-ракетные двигатели.

М.В. Келдыш и С.П. Королев в гостях у И.В. Курчатова, 1959 г.

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс , который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.


RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.