Форекс

Построение сетевой модели онлайн с кружочками. Создание сетевого графика в Microsoft Excel

В качестве показателей эффективности СМО с ожиданием, кроме уже известных показателей - абсолютной А и относительной Q пропускной способности, вероятности отказа P отк. , среднего числа занятых каналов (для многоканальной системы) будем рассматривать также следующие: L сист. - среднее число заявок системе; Т сист. - среднее время пребывания заявки в системе; L оч. - среднее число заявок в очереди (длина очереди); Т оч. - среднее время пребывания заявки в очереди; Р зан.. - вероятность того, что канал занят (степень загрузки канала).
Одноканальная система с неограниченной очередью. На практике часто встречаются одноканальные СМО с неограниченной очередью (например, телефон-автомат с одной будкой). Рассмотрим задачу.
Имеется одноканальная СМО с очередью, на которую не наложены никакие ограничения (ни по длине очереди, ни по времени ожидания). Поток заявок, поступающих в СМО, имеет интенсивность λ, а поток обслуживании - интенсивность μ. Необходимо найти предельные вероятности состояний и показатели эффективности СМО.
Система может находиться в одном из состояний S 0 , S 1 , S 2 , …, S k , по числу заявок, находящихся в СМО: S 0 - канал свободен; S 1 - канал занят (обслуживает заявку), очереди нет, S 2 - канал занят, одна заявка стоит в очереди; ... S k - канал занят, (k-1) заявок стоят в очереди и т.д.
Граф состояний СМО представлен на рис. 8.

Рис. 8
Это процесс гибели и размножения, но с бесконечным числом состояний, в котором интенсивность потока заявок равна λ, а интенсивность потока обслуживании μ.
Прежде чем записать формулы предельных вероятностей, необходимо быть уверенным в их существовании, ведь в случае, когда время t→∞, очередь может неограниченно возрастать. Доказано, что если ρ<1, т.е. среднее число приходящих заявок меньше среднего числа обслуженных заявок (в единицу времени), то предельные вероятности существуют. Если ρ≥1, очередь растет до бесконечности.

Для определения предельных вероятностей состояний воспользуемся формулами (16), (17) для процесса гибели и размножении (здесь мы допускаем известную нестрогость, так как ранее эти формулы были получены для случая конечного числа состояний системы). Получим (32)
Так как предельные вероятности существуют лишь при ρ < 1, то геометрический ряд со знаменателем
ρ < 1, записанный в скобках в формуле (32), сходится к сумме, равной . Поэтому
(33)
и с учетом соотношений (17)

найдем предельные вероятности других состояний
(34)
Предельные вероятности p 0 , p 1 , p 2 , …, p k ,… образуют убывающую геометрическую профессию со знаменателем р < 1, следовательно, вероятность р 0 - наибольшая. Это означает, что если СМО справляется с потоком заявок (при ρ < 1), то наиболее вероятным будет отсутствие заявок в системе.
Среднее число заявок в системе L сист. определим по формуле математического ожидания, которая с учетом (34) примет вид
(35)
(суммирование от 1 до ∞, так как нулевой член 0p 0 =0).
Можно показать, что формула (35) преобразуется (при ρ < 1) к виду
(36)
Найдем среднее число заявок в очереди L оч. Очевидно, что
(37)
где L об. - среднее число заявок, находящихся под обслуживанием.
Среднее число заявок под обслуживанием определим по формуле математического ожидания числа заявок под обслуживанием, принимающего значения 0 (если канал свободен) либо 1 (если канал занят):

т.е. среднее число заявок под обслуживанием равно вероятности того, что канал занят:
(38)
В силу (33)
(39)
Теперь по формуле (37) с учетом (36) и (39)
(40)
Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (в очереди), деленному на интенсивность потока заявок, т.е.
(41)
(42)
Формулы (41) и (42) называются формулами Литтла. Они вытекают из того, что в предельном, стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее: оба потока заявок имеют одну и ту же интенсивность λ.
На основании формул (41) и (42) с учетом (36) и (40) среднее время пребывания заявки в системе определится по формуле:
(43)
а среднее время пребывания заявки в очереди
(44)
Многоканальная СМО с неограниченной очередью . Рассмотрим задачу. Имеется n-канальная СМО с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность λ, а поток обслуживании - интенсивность μ. Необходимо найти предельные вероятности состояний СМО и показатели ее эффективности.

Система может находиться в одном из состояний S 0 , S 1 , S 2 ,…, S k ,…, S n ,…, - нумеруемых по числу заявок, находящихся в СМО: S 0 - в системе нет заявок (все каналы свободны); S 1 - занят один канал, остальные свободны; S 2 - заняты два канала, остальные свободны;..., S k - занято k каналов, остальные свободны;..., S n - заняты все n каналов (очереди нет); S n+1 - заняты все n каналов, в очереди одна заявка;..., S n+r - заняты все n каналов, r заявок стоит в очереди,....

Граф состояний системы показан на рис. 9. Обратим внимание на то, что в отличие от предыдущей СМО, интенсивность потока обслуживаний (переводящего систему из одного состояния в другое справа налево) не остается постоянной, а по мере увеличения числа заявок в СМО от 0 до n увеличивается от величины m до nm, так как соответственно увеличивается число каналов обслуживания. При числе заявок в СМО большем, чем n, интенсивность потока обслуживании сохраняется равной nm.

Рис. 9
Можно показать, что при r/n < 1 предельные вероятности существуют. Если r/n > 1, очередь растет до бесконечности. Используя формулы (16) и (17) для процесса гибели и размножения, можно получить следующие формулы для предельных вероятностей состояний n-канальной СМО с неограниченной очередью
(45)
(46)
(47)
Вероятность того, что заявка окажется в очереди,
(48)
Для n-канальной СМО с неограниченной очередью, используя прежние приемы, можно найти:
среднее число занятых каналов
(49)
среднее число заявок в очереди
(50)
среднее число заявок в системе
(51)
Среднее время пребывания заявки в очереди и среднее время пребывания заявки в системе, как и ранее, находятся по формулам Литтла (42) и (41).
Замечание. Для СМО с неограниченной очередью при r < 1 любая заявка, пришедшая в систему, будет обслужена, т.е. вероятность отказа P отк = 0, относительная пропускная способность Q = 1, а абсолютная пропускная способность равна интенсивности входящего потока заявок, т.е. А = l.

СМО с ограниченной очередью

СМО с ограниченной очередью. СМО с ограниченной очередью отличаются от рассмотренных выше задач лишь тем, что число заявок в очереди ограничено (не может превосходить некоторого заданного т). Если новая заявка поступает в момент, когда все места в очереди заняты, она покидает СМО необслуженной, т.е. получает отказ.
Очевидно: для вычисления предельных вероятностей состояний и показателей эффективности таких СМО может быть использован тот же подход, что и выше, с той разницей, что суммировать надо не бесконечную прогрессию (как, например, мы делали при выводе формулы (33)), а конечную.
Среднее время пребывания заявки в очереди и в системе, как и ранее, определяем по формулам Литтла (44) и (43).
СМО с ограниченным временем ожидания. На практике часто встречаются СМО с так называемыми "нетерпеливыми" заявками. Такие заявки могут уйти из очереди, если время ожидания превышает некоторую величину. В частности, такого рода заявки возникают в различных технологических системах, в которых задержка с началом обслуживания может привести к потере качества продукции, в системах оперативного управления, когда срочные сообщения теряют ценность (или даже смысл), если они не поступают на обслуживание в течение определенного времени.

В простейших математических моделях таких систем предполагается, что заявка может находиться в очереди случайное время, распределенное по показательному закону с некоторым параметром υ, т.е. можно условно считать, что каждая заявка, стоящая в очереди на обслуживание, может покинуть систему с интенсивностью υ.
Соответствующие показатели эффективности СМО с ограниченным временем получаются на базе результатов, полученных для процесса гибели и размножения.

В заключение отметим, что на практике часто встречаются замкнутые системы обслуживания , у которых входящий поток заявок существенным образом зависит от состояния самой СМО. В качестве примера можно привести ситуацию, когда на ремонтную базу поступают с мест эксплуатации некоторые машины: понятно, что чем больше машин находится в состоянии ремонта, тем меньше их продолжает эксплуатироваться и тем меньше интенсивность потока вновь поступающих на ремонт машин. Для замкнутых СМО характерным является ограниченное число источников заявок, причем каждый источник "блокируется" на время обслуживания его заявки (т.е. он не выдает новых заявок). В подобных системах при конечном числе состояний СМО предельные вероятности будут существовать при любых значениях интенсивностей потоков заявок и обслуживании. Они могут быть вычислены, если вновь обратиться к процессу гибели и размножения.

Рассмотрим простейшую СМО с ожиданием - одноканальную систему , в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом , т. е. если заявка пришла в момент, когда в очереди уже стоят заявок, она покидает систему необслуженной. В дальнейшем, устремив к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, заявок стоят в очереди;

Канал занят, т заявок стоят в очереди.

ГСП показан на рис. 5.8. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево - . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево - поток «освобождений» занятого канала, меющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Рис. 5.8. Одноканальная СМО с ожиданием

Изображенная на рис. 5.8 схема представляет собой схему размножения и гибели. Используя общее решение (5.32)-(5.34), напишем выражения для предельных вероятностей состояний (см. также (5.40)):

или с использованием :

Последняя строка в (5.45) содержит геометрическую прогрессию с первым членом 1 и знаменателем р; откуда получаем:

в связи с чем предельные вероятности принимают вид:

Выражение (5.46) справедливо только при (при она дает неопределенность вида ). Сумма геометрической прогрессии со знаменателем равна , и в этом случае

Определим характеристики СМО: вероятность отказа , относительную пропускную способность , абсолютную пропускную способность , среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т мест в очереди тоже:

Относительная пропускная способность:

Абсолютная пропускная способность:

Средняя длина очереди. Найдем среднее число заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины - числа заявок, находящихся в очереди:

С вероятностью в очереди стоит одна заявка, с вероятностью - две заявки, вообще с вероятностью в очереди стоят заявок, и т. д., откуда:

Поскольку , сумму в (5.50) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (5.50) и используя из (5.47), окончательно получаем:

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где - среднее число заявок, находящихся под обслуживанием, а известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться (с вероятностью ) или 1 (с вероятностью ), откуда:

и среднее число заявок, связанных с СМО, равно

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т. д.

Если же , т. е. когда вновь приходящая заявка застает канал обслуживания занятым и заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (5.47), получим:

Здесь использованы соотношения (5.50), (5.51) (производная геометрической прогрессии), а также из (5.47). Сравнивая это выражение с (5.51), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе. Обозначим матожидание случайной величины - время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100 %, очевидно, , в противном же случае

Пример 5.6. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно . Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок:

; .

По формулам (5.47):

Вероятность отказа .

Относительная пропускная способность СМО

.

Абсолютная пропускная способность СМО

машины в мин.

Среднее число машин в очереди находим по формуле (5.51)

т. е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (5.54)

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием . В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5.44), (5.45) и т. п.

Заметим, что при этом знаменатель в последней формуле (5.45) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т. е. при .

Может быть доказано, что есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что .

Если , то соотношения (5.47) принимают вид:

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому ,

Среднее число заявок в очереди получим из (5.51) при :

Среднее число заявок в системе по формуле (5.52) при

Среднее время ожидания получим из формулы

(5.53) при :

Наконец, среднее время пребывания заявки в СМО есть

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди . Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты каналов, остальные нет;

Заняты все каналов, свободных нет;

есть очередь:

Заняты все n каналов; одна заявка стоит в очереди;

Заняты все n каналов, r заявок в очереди;

Заняты все n каналов, r заявок в очереди.

ГСП приведен на рис. 5.9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 5.9. Многоканальная СМО с ожиданием

Граф типичен для процессов размножения и гибели, для которой решение ранее получено (5.29)-(5.33). Напишем выражения для предельных вероятностей состояний, используя обозначение : (здесь используется выражение для суммы геометрической прогрессии со знаменателем ).

Таким образом, все вероятности состояний найдены.

Определим характеристики эффективности системы.

Вероятность отказа. Поступившая заявка получает отказ, если заняты все каналов и все мест в очереди:

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем заявок в единицу времени, а СМО в целом обслуживает в среднем заявок в единицу времени. Разделив одно на другое, получим:

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (5.50), (5.51)-(5.53)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (5.59) только множителем , т. е.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

Системы с неограниченной длиной очереди . Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул (5.56) предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при . Допустив, что и устремив в формулах (5.56) величину m к бесконечности, получим выражения для предельных вероятностей состояний:

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (5.59):

а среднее время ожидания - из (5.60):

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Пример 5.7. Автозаправочная станция с двумя колонками () обслуживает поток машин с интенсивностью (машин в минуту). Среднее время обслуживания одной машины

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

Поскольку , очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (5.61) находим вероятности состояний:

Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО на интенсивность обслуживания :

Вероятность отсутствия очереди у АЗС будет:

Среднее число машин в очереди:

Среднее число машин на АЗС:

Среднее время ожидания в очереди:

Имеется n -канальная СМО с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность , а поток обслуживаний – интенсивность . Необходимо найти предельные вероятности состояний СМО и показатели ее эффективности.

Система может находиться в одном из состояний s 0 , s 1 , s 2 ,…,s k ,…,s n , нумеруемых по числу заявок, находящихся в СМО: s 0 – в системе нет заявок (все каналы свободны); s 1 – занят один канал, остальные свободны; s 2 – заняты два канала, остальные свободны;…; s k – занято k каналов, остальные свободны;…; s n – заняты все n каналов (очереди нет); s n +1 – заняты все n каналов, в очереди одни заявка;…; s n + r – заняты все n каналов, r заявок в очереди.

Граф состояний приведен на рис. 7

… …

В отличие от одноканальной СМО интенсивность потока обслуживаний не остается постоянной, а по мере увеличения числа заявок в СМО от 0 до n увеличивается от величины до , т.к. соответственно увеличивается число каналов обслуживания. При числе заявок больше, чем n , интенсивность потока обслуживаний сохраняется равной . Если в системе n каналов обслуживания с интенсивностью , интенсивность входящего потока равна , то, чтобы очередь не стала бесконечно большой, необходимо выполнение условия стационарности

Это условие означает, что суммарная скорость обслуживания всех каналов системы должна превосходить скорость поступления требований , иначе система не справится с обслуживанием потока.

Данное условие характерно только для систем с очередью в отличие от систем с отказом, т.к. все поступившие требования должны получить обслуживание.

Используя формулы (11)для процесса гибели и размножения, можно получить формулы для предельных вероятностей состояний n -канальной СМО с неограниченной очередью

(31)

,…, ,…, (32)

,…,

Вероятность того, что в системе заняты обслуживанием все n каналы, определяется по формуле

(33)

Для n -канальной СМО с неограниченной очередью, используя прежние приемы, можно найти:

Среднее число занятых каналов

Среднее число заявок в очереди

,

Среднее число заявок в системе

,

Среднее время обслуживания заявки

Среднее время ожидания обслуживания

Полученные выше формулы значительно упрощаются в случае одно – или двухканальной системы

При n=1

Т.к.

;

При n=2

Т.к.

,

Пример 7. К двум продавцам поступает на обслуживание поток покупателей с интенсивностью 220 человек в час. Каждый из продавцов затрачивает на обслуживание покупателя в среднем 30 секунд. Определите среднюю длину очереди и показатели занятости продавцов.



Решение. , ,

– интенсивность загрузки

– среднее число занятых обслуживанием каналов

– средняя длина очереди

– доля времени простоя продавцов

– доля времени занятости одного из двух продавцов

– доля времени занятости двух продавцов

Пример 8. В универсаме к узлу расчета поступает поток покупателей с интенсивностью . Средняя продолжительность обслуживания контролером-кассиром одного покупателя . Определить минимальное количество контролеров-кассиров n мин , при котором очередь не будет расти до бесконечности и соответствующие характеристики обслуживания при n=n мин .

Решение. По условию , . Очередь не будет возрастать до бесконечности при условии , т.е. при . Таким образом, минимальное количество контролеров-кассиров n min =3 .Р отк =0 , относительная пропускная способность Q=1 , а абсолютная пропускная способность равна интенсивности входящего потока заявок, т.е. .

Для нашей задачи абсолютная пропускная способность узла расчета A=1,35 1/мин или 81 1/ч , т.е. 81 покупатель в час.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех контролеров-кассиров.

→ Строительное производство


Методика составления сетевых графиков


Сетевые графики строятся по определенным правилам и в соответствующем порядке на основе некоторых исходных документов и данных. Порядок построения сети может быть разный, но во всех случаях рекомендуется придерживаться ряда общих положений и выработанных практикой правил, приемов. Прежде всего сеть вычерчивается слева направо, работы-стрелки при этом могут иметь произвольную длину и наклон, но общее направление их должно быть именно слева направо. Вначале строится сеть в черновом варианте без нумерации событий (рис. 20.3), после чего эта сеть подвергается упорядочению; в процессе упорядочения в нее добавляются все упущенные и неучтенные работы и взаимосвязи. Пример упорядоченной сети графика приведен на рис. 20.4. Стрелки не должны взаимно пересекаться, лучше несколько сместить событие или изобразить в виде ломаной линии, как это показано на рис. 20.5, а, б.

В практике строительного производства встречается много случаев, когда две или более работ имеют начальное и конечное события, но различную продолжительность, как, например, санитарно-технические и электромонтажные работы в гражданском здании. Они выполняются обычно совмещенно, но не всегда одновременно, после готовности каркаса или стен, а заканчиваются к моменту начала малярных работ.

Рис. 20.3. Первичная схема модели

Рис. 20.4. Схема Рабочей сетевой

Рис. 20.5. Примеры построения сетевой модели

Рис. 20.6. Схема модели при параллельных работах

Если взять две параллельные работы А и £, то их следует изображать так, как показано на рис. 20.5, в, г, а на рис. 20.5, д показано неправильное изображение параллельных работ.

Ркс. 20.7. Привязка поставки материалов и конструкций к сетевой модел

При выполнении параллельных работ приходится вводить дополнительное (промежуточное) событие 6 и зависимость в виде холостой связи 6-7 (рис. 20.б). Как видно из рис. 20.6, ХХ.б, одно событие служит на-чалом двух и более работ, а другое - окончанием.

Кроме отдельных работ и технологических перерывов на сетевом графике изображаются всевозможные поставки материально-технических ресурсов, оборудования и технической документации. Поставки являются внешними работами к процессу производства. Внешние поставки изображаются сплошной стрелкой с индексом П, идущей от события в виде двойного кружка с нулевым обозначением к событию 8, 5 или 12, с которого начинается потребление материалов, полуфабрикатов, сборных конструкций или оборудования (рис. ХХ.7,в). Если от данного события 12 начинается не одно, две работы 12-13 и 12-14 (рис. ХХ.7,а), а соответствующая поставка О предназначена только для работы 12- 13, соединять событие О с событием 12 стрелкой нельзя, нужно ввести промежуточное событие 13’ и фиктивную связь 12-13’ (рис. ХХ.7,б). Продолжительность поставки определяется с момента заявки до момента прибытия материалов, конструкций или оборудования на объект.

В сетевых графиках приходится отражать организационные мероприятия, связанные с организацией потока и разбивкой общего фронта работ на захватки. Зависимость организационного характера выражается в последовательном переходе бригад рабочих и перемещении оборудования с захватки на захватку.

Пример. Допустим, имеются три работы, связанные между собой технологической последовательностью: отрывка траншей, устройство фундаментов и кладка стен здания. Каждая работа в графике считается самостоятельной, имеющей свои предшествующие и последующие события (рис. 20.8,а).

Рис. 20.8. Схемы сетевой модели при позахватноа системе производства работ

При выполнении этих работ используем принцип поточности, для чего организуем две захватки. На захватках рабочими определенной профессии последовательно выполняются соответствующие работы. Графически связь между отдельными видами работ изображается с помощью фиктивных связей. С помощью этих связей (зависимостей) показывается переход одной профессии бригад рабочих с захватки на захватку при выполнении земляных работ для рытья траншеи, устройства фундаментов и кладки стен. И в самом деле, после отрывки траншеи на захватке землекопы или электросварщики переходят на вторую захватку. В это время на захватке в траншее ведется устройство фундаментов путем бутобетонной кладки или монтажа элементов сборного фундамента и т. д.

Предположим, что имеем другую работу - укладку труб с целью устройства наружного водопровода. Укладка труб непосредственно связана с разработкой грунта. Для выполнения работ делим на этом фронте работы на три захватки. Графически сетевая модель для этих работ будет иметь вид, изображенный на (рис. 20.8,б). Здесь к фиктивным связям относятся 2-5, 3-6 и 4-7; земляные работы разбиты на три части соответственно трем частям работы по укладке труб.

Отрывку траншеи и укладку труб можно графически изобразить в другом варианте (рис. 20.8,в).

При построении сетевых графиков применяются односторонние и двухсторонние связи. Односторонние связи между работами изображаются путем использования фиктивной работы. Если после окончания двух работ а я б можно начать работу с, а начало работы d зависит только от окончания работы Ь, то вводится фиктивная связь и дополнительное событие 3’ (рис. 20.9,а). При наличии пяти работ: а, Ь, с, d, e имеются следующие взаимосвязи: работа с начинается после окончания работ а и Ь, а работа е - после окончания работ bud. Графически эту зависимость нужно изобразить так, как показано на рис. ХХ.9, б, но не по рис. ХХ.9, в (здесь работа с зависит не только от работ а и Ь, но и от работы d, что противоречит условию).

Если после окончания двух работ а и Ь можно начать работу с, а начало работы d зависит только от окончания работы а и начало работы е- от окончания работы Ь, то на сети эти зависимости изображаются в.следующем виде (рис. ХХ.9,г).

Двухсторонняя связь возникает при условии, если последующие работы начинаются до полного окончания предшествующей работы; эта зависимость показана на рис. ХХ.10, а. Здесь каждый процесс Л, £, С представлен как сумма последовательно выполненных одноименных работ: первые два процесса А и В развиваются самостоятельно и независимо друг от друга, а третий С выполняется по мере окончания первых двух.

Рис. 20.9. Схемы сетевой модели при односторонней связи между работами

Очевидно, каждый процесс выполняется на трех захватках (участках) и зависимость процесса С от процессов А и В имеет двухстороннюю холостую связь.

Двухсторонняя связь возникает также при большом числе процессов и поточном их выполнении на нескольких участках.

Пример показа двухсторонней связи при поточном строительстве изображен на рис. 20.10, б, где показано выполнение четырех процессов на трех участках.

Рис. 20.10. Схемы сетевой модели при двухсторонней связи между работами

Рис. 20.11. Схемы холостой связи а определения критического пути

Здесь сеть имеет неправильное построение. Чтобы правильно отразить технологические и организационные связи, вводятся промежуточные события и холостые связи (вариант виг). Схема сети в сложнее схемы г; ее упрощают за счет уменьшения числа собы тий и холостых связей (вариант г).

Число и направление промежуточных (холостых) связей оказывают влияние на длину критического пути.

Пример. Имеется сеть из 4 работ, 4 событий и одной холостой связи от события 2 к событию 3 (рис. ХХ.11, а). Критический путь проходит по событиям 1, 3, 4 и равен 9+7=16 дн. Холостая связь в этом случае не оказывает никакого влияния, так как путь через эту связь будет меньше критического 5+0+7 16 дн.

Рис. 20.12. Схемы сетевой модели до укрупнения, после укрупнения

При построении сети следует обращать внимание на недопустимость в сетевых графиках замкнутых контуров, тупиковых и хвостовых событий. Тупик в сети- это событие, из которого не выходит ни одной работы. Наличие замкнутых контуров, тупиков и хвостовых событий, событий свободно повисших указывает на ошибку в исходных данных или о неверном построении сети.

Если сетевой график охватывает большой комплекс работ, то возникает необходимость его укрупнения (упрощения) за счет замены совокупности однородных работ одной составной работой. Такая замена возможна тогда, когда какая-либо группа работ имеет одно начальное и одно конечное событие.

Пример. Для пояснения возьмем сетевой график, изображенный на рис. 20.12, а. В этом графике группу работ между событиями 3 и 6, 6 и 13 можно укрупнить. При укрупнении сетевой модели следует иметь в виду, что временная оценка графика ведется по наибольшему пути.

Например, между событиями 3 и 6 имеется пять работ: 3-4, 3-5, 4-5, 4-6 и 5-6. Принимая наибольший путь 6+8+ +9=14 дн. и работы 7-10, 10-12, 12-13 в укрупненной сети представлены в виде одной работы 7-13 продолжительностью 8+3+7=16 дн. Таким образом, сохранены граничные события

При укрупнении сетевых графиков нельзя вводить в него события, которых нет в детальных сетевых графиках (сеть на рис. XX. 12, а является детальной).

Обычно укрупнению подвергаются такие работы, которые закреплены за одним ответственным исполнителем или подразделением. Каждый исполнитель или подразделение составляет первичную или частичную сеть на определенный закрепленный за ним комплекс работ. Нужно полагать, что в сети одного исполнителя появляются события (граничные), в которых нуждаются другие исполнители, и наоборот. Для того чтобы координировать действия отдельных исполнителей или подразделений, необходимо объединить частные сетевые графики в один общий. Процесс объединения многих частных сетевых графиков в один общий называется сшиванием сетевого графика. При сшивании выявляются и устраняются все случаи несогласованности между отдельными участками сети.

В строительстве крупного здания и сооружения принимают участие генподрядчик и субподрядные специализированные строительные организации. Каждая специализированная организация разрабатывает свой частный сетевой график, а генподрядчик составляет сетевой график на свой комплекс работ и сводный сетевой график. Иногда полезно иметь сводный сетевой график производства всех строительных, монтажных и специальных работ с выделением субподрядных организаций.

8 каждом частном графике нумерация событий применяется своя. Однако каждой организации для нумерации событий сети выделяется заранее определенное число номеров: первой от 0 до 100, второй - от 101 до 150, для третьей - от 151 до 200 и т. д. Каждая специализированная организация может принять и свои условные обозначения для событий. Вместо кружков могут быть приняты прямоугольники, квадраты, трапеции, овалы и др. Введение условных обозначений дела
ет сводный сетевой график более наглядным и позволяет каждой организации быстро находить свои раооты и их связи на общей сети.

Рис. 20.13. Схема объединевной сетевой модели

Рис. 20.14. Схема свободной сетевой модели с выделением работ субподрядных организаций

Рис. 20.15. Сетевая модель с расчетными параметрами

При сшивании сетевого графика необходимо придерживаться следующего правила: внутри события проставляются два номера-сверху старый (частной сети), а снизу новый порядковый номер (сводной сети). На рис. 20. 13 представлена нумерация объединяемых сетей в один график. Сшивание сетей вручную является трудоемкой работой, и потому для крупных объектов строительства с числом событий более 200 построение и корректирование сетевых графиков выполняют ЭВМ по специально разработанной программе. Граничные события отдельных первичных сетей вводятся в память машины, которая сшивает их и делает перенумерацию событий.

Схема сводного сетевого графика с выделением субподрядных организаций изображена на рис. XX. 14. Из данного графика видно, что в строительстве объекта принимают участие четыре организации: генподрядчик и три субподрядные организации: ЭМ-3 (электромонтажное управление), СМУ-9 (строительно-монтажное управление) и МУ-8 (монтажное управление).

На рис. 20. 15 представлен сетевой график с нанесением критического пути. В данном сетевом графике между начальным и конечным событиями имеется несколько полных путей, помещенных в табл. ХХ.2. В этой таблице помещены также продолжительности работ; на графике они размещены под стрелками. Критический путь равен наибольшей сумме продолжительностей работ: 1-2, 2-3, 3-7, 7-8, 8-9. Все работы по сетевому графику закончатся на 36-й день. Если взять путь 1_4-6-8-9, то его общая продолжительность равна 22 дн. Этот путь имеет запас времени 36-22=14 дн. Данный запас времени можно использовать для увеличения продолжительности некритических работ и освобождения материально-технических ресурсов для выполнения критических работ.

Исходные данные для составления сетевого графика. Исходным документом для составления сетевого графика является перечень работ и материально-технических ресурсов, который составляется на основе: – норм продолжительности строительства объекта и директивного срока; – проектно-сметной документации (проектное задание и рабочие чертежи) на строительство объекта или комплекса зданий и сооружений; – проекта организации строительства (ПОС) и проекта производства работ (ППР)„ технологических карт;
действующих выпусков ЕНиР на строительно-монтажные и специальные работы; – данных о продолжительности выполнения отдельных видов работ при строительстве аналогичных объектов; – сведений о сложившейся структуре и наличии ресурсов строительно-монтажных организаций, материально-технической базе строительства (мощности бетонных заводов, заводов сборного железобетона, парке машин, механизмов и т. д.);
-данных о технологии и организации строительства аналогичных объектов; – даты начала строительства.

При составлении сетевого графика производства работ решаются следующие вопросы: – устанавливается номенклатура и технологическая последовательность строительно-монтажных и специальных работ; – определяется потребность в людских и материально-технических ресурсах по отдельным видам работ: – устанавливается начальное и конечное события; – определяются критический путь и запасы времени; – сопоставляется фактически установленный срок строительства с нормативным по СНиП.

За начальное событие принимается при составлении ПОС начало проектирования, при составлении ППР - начало проектирования или начало производства работ, при составлении учебного (курсового или дипломного) проекта - начало работ.

При разработке сетевого графика необходимо прежде всего наметить укрупненную схему исходного сетевого графика с ограниченным количеством событий. Такая схема является обязательной для выдачи заданий ответственным исполнителям на составление отдельных участков сетевого графика. Эта схема дает возможность ответственным исполнителям установить взаимосвязь с другими участками графика, определять входы и выходы отдельных участков графика, определять комплекс работ других исполнителей и т. п. Эта схема, наконец, служит основой при сшивке единого графика из частных сетей.

Если схема исходного сетевого графика не соблюдает сроки строительства, то производится его оптимизация путем повторного или многократного планирования и расчета, пока график не будет удовлетворять: директивным срокам.

Для возможного сокращения критического пути (срока строительства) необходимо определить сокращенную продолжительность работ за счет введения двухсменной работы и увеличения числа рабочих на критических работах, разбивки работ на захватки и введение параллельно нескольких работ, установления дополнительных машин, пересмотра технологии производства работ. Увеличение ресурсов для работ критического пути осуществляется за счет перераспределения ресурсов с работ некритических путей и иногда за счет привлечения дополнительных ресурсов извне.

Методика расчета сетевых моделей. Следующим этапом при составлении сетевого графика является его расчет. Расчет сетевого графика заключается в определении следующих его параметров: продолжительности критического пути и работ, лежащих на нем: наиболее ранних из возможных и наиболее поздних из допустимых сроков начала и окончания работ; всех видов за- А пасов времени для работ, не лежащих на критическом пути; календарных дат.

Параметры сетевого графика рассчитываются вручную и на электронно-вычислительных машинах.

Расчет сетевых графиков вручную производится аналитическим, табличным или графическим методом.

Аналитический метод расчета сетевого графика основан на использовании формул и непосредственно связан с определением понятий расчетных параметров сети и с расчетной схемой.

Табличный метод расчета сетевой модели основан на применении разнообразных форм таблиц и приемов их заполнения; характеризуется большой наглядностью и комплектностью. В отличие от табличной формы расчета всех рабочих параметров сети графический метод выполняется непосредственно на самом графике. Существует несколько способов графического метода расчета сетевых графиков: многосекторный, четырехсекторный, способы квадрата и овала, числителя и знаменателя, с применением масштабного сетевого графика.

Для того чтобы лучше проследить методику расчета, возьмем готовый простой сетевой график, изображенный на рис. 20.17. Данный сетевой график состоит из шести событий и девяти обезличенных работ, из них одна фиктивная; продолжительности работ в днях указаны под стрелками.

Пример. Методику расчета данного сетевого графика покажем в технологической последовательности.