Закон и право

Как получают сжатый воздух. Теоретические основы технологии сжатия воздуха

Тема: Лабораторная работа «Сложение сил, направленных вдоль прямой и под углом»
Цели урока: актуализация и систематизация знаний учащихся о силах, способах их измерений.
Привитие вкуса к исследовательской работе,
Развитие познавательного интереса,
Формирование исследовательских умений и вычисление физических величин с помощью опытных данных.
Воспитание сотрудничества при работе в парах, при выполнении лабораторного эксперимента.
Оборудование: металлическое колечко, набор гирь, 3 динамометра, нити.

Ход урока:
I.Повторение
Фронтальный опрос:
I закон Ньютона.
Сила – причина ускорения.
II закон Ньютона.
Равнодействующая сил.
III закон Ньютона.
Сложение векторов правилу треугольника и параллелограмма. (у доски)
Сила, равная геометрической сумме всех приложенных к телу (точке) сил, называется равнодействующей или результирующей силой.

Сила, которая производит на тело такое же действие, как и несколько одновременно действующих сил, называется равнодействующей этих сил.
Нахождение равнодействующей нескольких сил - это геометрическое сложение действующих сил; выполняется по правилу треугольника или параллелограмма.

Проблема урока.
“Однажды Лебедь, Рак да ЩукаВезти с поклажей воз взялисьИ вместе, трое, все в него впряглись;Из кожи лезут вон,А возу все нет ходу!Поклажа бы для них казалась и легка:Да Лебедь рвется в облака,Рак пятится назад,А Щука тянет в воду!Кто виноват из них, кто прав –Судить не нам;Да только воз и ныне там!”
(И.А.Крылов)
В басне выражено скептическое отношение к Александру I, она высмеивает неурядицы в Государственном Совете 1816 г. реформы и комитеты, затеваемые Александром I не в силах были стронуть с места глубоко увязший воз самодержавия. В этом-то, с политической точки зрения, Иван Андреевич был прав. Но мы давайте выясним физический аспект. Прав ли Крылов? Для этого необходимо экспериментально проверить актуальность понятия- равнодействующая сил, приложенных к телу/
II. Выполнение лабораторной работы по учебнику
Записываем тему сегодняшнего урока- тему лабораторной работы. Ознакомьтесь с техникой безопасности на сегодняшнем уроке и распишитесь в журнале по технике безопасности.
Оформляем лабораторную работу.(отчет: тема, цель, оборудование).
Определение равнодействующей для сил, направленных вдоль одной прямой.
Вывод: Равнодействующая двух сил, направленных в одну сторону равна геометрической сумме этих сил.
Определение равнодействующей для сил, направленных под углом.
Сделать соответствующий рисунок. F=F1 +F2
Вывод: Равнодействующая нескольких сил равна геометрической сумме этих сил.
Повторить опыт, изменив значения сил F1 и F2 и результат записать.
Формулируем вывод в выполненной работе.
III. Итог урока.
IV. Домашнее задание: повторить §8,9 .
Рисунок 1Заголовок 315


Приложенные файлы

Атмосферный воздух – смесь газов, не вступающих в реакцию при обычных условиях. В основном это азот и кислород. Поэтому все свойства, характерные для кислорода и азота, присущи и воздуху.

Азот – это газ, близкий по своему воздействию к нейтральным газам, и не требует применения каких-то защитных мер или специальных материалов для объектов, контактирующих с ним. Однако он оказывает неблагоприятное воздействие на человека, длительно пребывающего в среде с повышенным содержанием азота.

Кислород, наоборот, активный окислитель. Поэтому конструкция машин и аппаратов для этого газа должна учитывать корозийность, особенно влажного воздуха, возможность возгорания горючих материалов в среде воздуха, возможность самовоспламенения и взрыва в газовых коммуникациях при наличии отложений нагара, паров или капель масла (свыше 100 атм.).

Воздух растворяется в смазочных маслах, способствует их преждевременному окислению, коксованию, понижению температуры вспышки.

Воздействие на человека

При понижении давления до 140 мм Нg появляются признаки кислородного голодания, а при 110 мм Нg – гипоксия, до 50 – 60мм – уже опасно для жизни.

Увеличение парциального давления N2 в воздухе вызывает наркотические действия.

Высокая концентрация СО2 вызывает асфиксию , а при
14 – 15% его наступает смерть. В жилых помещениях содержание углекислого газа не должно быть выше 0,1%.

4.2 Значение воздуха в развитии человечества

4.2.1 Развитие технологий применения сжатого воздуха

Ещё 3000 лет назад дутьё воздуха мехами применялось для выплавки металлов и вентиляции шахт (есть др. египетские рисунки).

Герон Александрийский ввел понятие «пневматика» - использование сжатого воздуха.

В средние века начали применять привод мехов от водяного колеса.

В средине XVIII века изобретена паровая машина и сходный с ней поршневой компрессор, создавший давление до 0,2 МПа (2 атм).

В 1741г. Гелье построил примитивный вентилятор с вращающимися на оси лопатками – воздуходувку.

Затем появились пневмопочта, водолазный костюм, кессоны.

В начале XIX в. уже могли сжимать воздух до давления 0,5 – 0,6 МПа, и начали передавать его на расстоянии. Началось широкое применение сжатого воздуха в различных технических устройствах.

В 1845г. изобретена пневмомашина, а в 1872 г. – пневмотормоз.

В 1857г. появился пневмоинструмент – бурильный молоток – для прокладки тоннеля в Альпах.

Вскоре появились первые КС – в Париже N =1470 кВт,
p = 0,6 МПа, протяженностью сети до 48 км – обеспечения для фабрик и заводов. Позже довели мощность до 18500 кВт – с паровым приводом.

4.2.2 Назначение сжатого воздуха

Сегодня ни одно промышленное предприятие не может обойтись без применения сжатого воздуха, который является доступным и дешевым источником как сырьевым, так и энергетическим. Особенно широко сжатый воздух используется в промышленности и строительстве. Источниками сжатого воздуха служат как небольшие мобильные установки, так и крупные стационарные компрессорные станции, связанные с потребителями через сеть воздухопроводов, что в совокупности образует систему воздухоснабжения промышленного предприятия.

Системы воздухоснабжения предназначены для выработки сжатого воздуха требуемых параметров и бесперебойного обеспечения им технологических нужд предприятия.

В зависимости от профиля предприятия, производства сжатый воздух сегодня используется для:

Осуществления основных технологических процессов (как компонент химической технологии, например, для получения кислорода и азота, для дутья в металлургии и т. п.);

Энергетического применения, связанного с использованием воздуха как окислителя при сжигании различных топлив или как теплоносителя для нагрева или охлаждения газов и жидкостей;

Как рабочее тело в двигателях ДВС, ГТУ;

Обеспечения работы пневмоинструмента и пневмоприводов, питания машин литейных и кузнечных производств, строительных машин и механизмов, выполнения обдувных, пескоструйных, покрасочных и других работ на производственных предприятиях различного профиля деятельности;

Обеспечение работы технологических комплексов и устройств (конвейеров, систем пневмотранспорта, буровых станков и т. п.);

Обеспечения работы пневматических систем, систем КИП и А и многое другое в технике.

Заметим, что на некоторых производствах, например на химических комбинатах, сжатый воздух для основных технологических процессов имеет параметры, отличные от параметров системы воздухоснабжения, и вырабатывается специальными компрессорами, входящими в состав оборудования технологических линий.

В курсе «Компрессорные станции» рассматривается применение сжатого воздуха в качестве энергоносителя в различных производствах. Это его применение трудно переоценить. Но есть и другие применения. Наиболее значительные из них – использование воздуха в качестве реагентов в металлургии и химии, а также пневмотранспорте.

4.3 Применение сжатого воздуха в металлургии

Здесь воздух применяется в качестве реагента, содержащего О2. Главная функция – дутьё, т. е. подача сжатого воздуха в различные агрегаты – домны, мартены, конверторы. Это крайне необходимо для горения во всех металлургических процессах.

Обогащение руды – (1-й процесс) – повышение содержания железа или другого металла в руде и понижение вредных примесей. Один из способов обогащения – флотация.

Сжатый воздух продувают через пульпу. При пенной флотации частицы полезного минерала не смачиваются водой и поднимаются вместе с пузырьками воздуха, а другие смачиваются и оседают на дно – это пустая порода (рис. 4.4).

Широко используется для обогащения руд цветных металлов (% низкий), но и для железа тоже.

Агломерация" href="/text/category/aglomeratciya/" rel="bookmark">агломерационной машине (рис. 4.5).

Кокс начинает гореть, руда разогревается и превращается в прочную пористую массу – «слипается» – это и есть агломерат, что позволяет потом в домне осуществить более эффективный процесс выплавки чугуна.


Рисунок 4.5 – Схема агломерации

Доменный процесс (рис. 4.6). Железо в руде находится в виде окислов. Поэтому нужно освободить железо от связанного с ним О2 – восстановление.

Рисунок 4.6 – Доменный процесс

Кислород, содержащийся во вдуваемом в печь горячем воздухе, взаимодействует с углеродом кокса, образуя СО2. Он поднимается выше, взаимодействует с коксом, образуя СО, она отбирает у окислов железа руды кислород и связывает его. А освободившееся железо взаимодействует с углеродом, образуя чугун. На 1т чугуна необходимо 2500 – 3500 м3 воздуха, т. е. V =8000 м3/мин. Чтобы воздух не охлаждал печь, его предварительно подогревают до 1100 – 1300ºC в кауперах.

Насадку греют, сжигая топливо. Затем подачу топлива прекращают и прокачивают воздух. Чтобы процесс подачи был непрерывный, устанавливают несколько кауперов. Заметим, что в воздухе 4/5 азота, т. е. 80% энергии затрачивается впустую, т. к. для горения используется только 20% кислорода.

Очевидно, что выгоднее воздух обогащать кислородом. Но это стало возможным лишь в 30 – 40-х годах XX века с появлением мощных разделительных установок.

Конверторный способ варки стали (бессемеровский). Расплавленный жидкий чугун продувают сжатым воздухом, и содержащийся в нем О2 соединяется с углеродом, кремнием и марганцем (рис. 4.7 а). Этот процесс обратный доменному процессу – окислительный. Таким образом, связывают ненужные компоненты в окислы и удаляют.

При продувке воздухом углерод быстро выгорает и из чугуна образуется сталь. А Si и Mn при соединении с О2 выделяют тепло для поддержки реакции, т. е. конвертор – «печь без топлива» (Менделеев). Недостатки – насыщение стали азотом – хрупкость стали, склонность к старению. Оставались и вредные примеси S и P . Чугун для этого годился не всякий, а только с Si и Mn. Металлолом в конверторе нельзя переплавлять.

Поэтому лучше – мартеновский способ – для переработки чугуна и лома (рис. 4.8).

Здесь тепло для процесса плавления необходимо подводить за счет сжигания мазута, коксового газа, калашникового газа. Смесь газа и воздуха подогревается в регенераторах за счёт тепла, уходящих из печи продуктов сгорания. Нагреваются насадки. Аппараты периодического действия. Поэтому их ставят парами и переключают через 15 – 20 мин. Производительность мартена – 100 т стали в час. Этот способ более прогрессивный.

Система воздухоснабжения промышленных предприятий.

Тема 2.

Сжатый воздух является одним из основных энергоресурсов и применяется как рабочая среда в технологических процессах (например, в химических производствах) и как энергоноситель (пневмоинструмент, пневмооснастка, пневмоавтоматика и т.д.) практически на всех предприятиях. Сжатый воздух применяется на электроподстанциях для приведения в действие пневматических приводов выключателей и разъединителей. В воздушных выключателях сжатый воздух используется для гашения электрической дуги и вентиляции внутренних полостей выключателей для удаления осаждающейся на них влаги. В выключателях с воздухонаполненным отделителем, а также в выключателях серий ВВБ, ВНВ и др. сжатый воздух выполняет роль основной изолирующей среды между главными контактами выключателя, находящегося в отключенном положении.

Потенциальная энергия сообщается воздуху в процессе его сжатия и используется затем в пневматических приводах для совершения механической работы. Потенциальная энергия преобразуется в кинетическую энергию струи расширяющегося сжатого воздуха.

Для работы воздушных установок сжатый воздух накапливается в резервуарах этих установок. В свою очередь резервуары пополняются от систем, предназначенных для получения сжатого воздуха.

Подбор оптимальной схемы распределения и рациональных режимов производства и потребления сжатого воздуха ведет к экономии, что не может не оказать значительного влияния на энергобаланс предприятия в целом. Поскольку на производство сжатого воздуха расходуется электроэнергия, его экономия влечет за собой снижение затрат на покупку энергоресурсов.

Особенностью выработки сжатого воздуха является то, что производительность компрессорного оборудования зависит от сезонного изменения плотности атмосферного воздуха (летом плотность воздуха на 15-17% ниже, чем зимой) и давления нагнетания.

Увеличение давления с 5,0 до 6,0 кгс/см2 влечет снижение производительности компрессора на 4-7%, а затраты энергии на компремирование при этом возрастают на 7-10%. Существенным фактором, негативно влияющим на работу компрессорного оборудования, является неритмичное потребление сжатого воздуха, объемы которого доходят на некоторых компрессорных станциях до 40%. Для обеспечения стабильной работы потребителей, при наличии значительных объемов неритмичного потребления, персонал компрессорных станций вынужден поддерживать повышенное давление сжатого воздуха на источниках. Кроме того, знакопеременные нагрузки на оборудование при частых циклах «загрузки-разгрузки» компрессоров влекут преждевременный выход из строя отдельных узлов, на восстановление которых требуются значительные финансовые средства, время и трудозатраты.



Сжатый воздух, в силу своих свойств, существенно отличается от других энергоресурсов:

1. Сжатый воздух не обладает собственной калорийностью, характеризующей объемы использования пара и теплофикации;

2. Сжатый воздух не обладает теплотворной способностью, являющейся основной характеристикой всех видов топлива;

3. Сжатый воздух не используется в химических реакциях как кислород и твердое топливо;

4. В силу своей многокомпонентности сжатый воздух не может быть использован для образования защитной среды как азот и аргон;

5. Сжатый воздух не обладает достаточно высокой удельной теплоемкостью (как вода), характеризующей объемы перекачки технической воды;

6. Сжатый воздух, отчасти, как и электроэнергия, используется в различных по принципу действия приводах для трансформации в механическую работу;

7. Отличительной особенностью является возможность преобразования кинетической энергии струи энергоносителя (струйные пневмоприемники) в механическую.

Все эти отличия обусловливают специфику использования сжатого воздуха как энергоресурса. Основной характеристикой ресурса является способность выполнения работы единицей объема при рабочих параметрах. Отсюда вытекает прямая зависимость расхода ресурса от его плотности в сжатом состоянии. В свою очередь, плотность расходуемого воздуха зависит от давления и температуры.

Перечисленные выше свойства сжатого воздуха как энергоресурса и специфические особенности его выработки определяют необходимость организации работы по энергосбережению у потребителей, в сетях и на источниках сжатого воздуха. Необходимо искать и реализовывать наиболее эффективные способы выполнения этой работы, направленной на изменение и настройку системы распределения (конфигурацию и параметры сетей сжатого воздуха) в условиях изменения структуры основных потребителей и постоянно меняющихся требований к параметрам ресурса. В настоящее время эта работа включает в себя следующие основные направления:

Снижение объемов неритмичного потребления ресурса за счет перевода потребителей на локальное снабжение;

Перевод потребителей, не имеющих повышенных требований к параметрам ресурса на снабжение сжатым воздухом более низких параметров;

- снижение давления на источниках (магистральных воздухопроводах) за счет перераспределения снабжения потребителей со сходными требованиями к параметрам энергоносителя.

Регулирование давления сжатого воздуха является эффективным методом экономии энергоресурса. Снижение давления на 0,1 кг/см 2 позволяет сократить потребление сжатого воздуха примерно на 2 %. Существуют различные способы регулирования:

- установка ограничительных устройств;

- установка регуляторов и регулирующих клапанов;

- дросселирование на запорной арматуре.

Наиболее эффективным, но и наиболее затратным является второй способ.

Установка регулирующих клапанов позволяет точно поддерживать заданное давление либо его перепад. Установка ограничительных устройств требует предварительного расчета, а также определенных затрат на изготовление, но данный способ не позволяет осуществлять точное поддержание параметров на заданном уровне. Схожий эффект дает дросселирование на запорной арматуре.

Данный способ является самым беззатратным.