Недвижимость

Кто относится медицинским работникам. Новый профстандарт «Младший медицинский персонал

Вам понадобится

  • - термометр;
  • - данные о максимальных и минимальных температурах:
  • - калькулятор;
  • - часы;
  • - бумага и карандаш.

Инструкция

Для определения амплитуды суточных температур наружного возьмите самый обычный уличный термометр. В России в качестве термометров обычно применяются спиртовые со шкалой Цельсия. В других странах используется также шкала Фаренгейта или Реомюра. Нередко можно встретить двушкальные . В этой ситуации важно снимать показания по одной и той же шкале.

Решите, через какой промежуток времени вы будете снимать показания. Метеорологи обычно это через каждые три часа. Первое измерение проводится в 0 часов, затем в 3 часа ночи, 6 и 9 часов утра, в полдень, в 15, 18 и 21 час. Лучше вести отсчет по астрономическому времени. Снимите и запишите показания.

Найдите показатели самой высокой и самой низкой температур. Вычтите из максимального значения минимальное. Это и есть амплитуда суточных температур наружного воздуха.

Точно так же определите месячную и годовую амплитуды температур. Снимайте показания постоянно, через равные промежутки времени. Очень удобно использовать для этого специальный календарь. Разделите лист бумаги так, как это обычно делается в карманном календарике. Ячейку, отведенную для каждого дня, разделите на количество временных интервалов. Заносите показания систематически, отмечая каждый день самую высокую и самую низкую температуры.

По окончании месяца выпишите все экстремальные значения. Найдите самую высокую температуру за весь период, затем - самую низкую. Вычислите разность между ними. Если вам приходится оперировать с отрицательными числами, выполняйте арифметические действия с ними точно так же, как и при решении обычных математических задач. Например, если +10°, а минимальная - тоже 10°, но ниже нуля, вычислите амплитуду по формуле А=Тmax-Tmin=10-(-10)=10+10=20°,

Амплитуду температур можно наглядно пронаблюдать на графике. Горизонтальную ось разделите на равные отрезки, отметьте на каждой время измерений. Выберите длину отрезка вертикальной оси - например, 1°. Напротив каждой отметки времени проставьте значения температур. Соедините точки кривой. Найдите самую высокую и самую низкую точки. Расстояние между ними по оси ординат и будет амплитудой - в данном случае температур наружного воздуха.

Для определения амплитуды среднесуточных температур найдите сначала сами средние значения. Чтобы найти среднесуточную температуру, сложите все показания и разделите сумму на число измерений. Проведите эту процедуру для всех дней недели или месяца. Найдите максимальное и минимальное значения. Вычтите из второго первое.

Источники:

  • амплитуда температуры воздуха

Для нахождения амплитуды необходимо взять линейку или другое приспособление для измерения расстояний и измерить наибольшее отклонение от положения равновесия. В случае с математическим маятником нужно измерить его длину и высоту подъема. Для измерения амплитудных значений напряжения и силы переменного тока нужно будет получить показания вольтметра и амперметра.

Вам понадобится

  • линейка, рулетка, вольтметр и амперметр для переменного тока

Инструкция

Измерение амплитуды напряжения и силы тока Для сети переменного тока наибольший интерес представляют максимальные значения силы тока и напряжения (амплитудные значения) на данном потребителе или участке цепи. Для этого возьмите и вольтметр, переключите их на измерение переменного тока. После этого включите амперметр в цепь последовательно, а вольтметр параллельно, присоединив его клеммы к концам участка цепи, куда подключен потребитель. Снимите показания с . Это действующие или эффективные значения силы тока (амперметр) и напряжения (вольтметр). Для того чтобы получить амплитудные значения напряжения и силы тока, умножьте каждое из них на 1,4.

Источники:

  • как уменьшить амплитуду

Амплитудой называется разница между экстремальными значениями той или иной величины, в данном случае температуры . Это важная характеристика климата той или иной местности. Умение вычислять этот показатель необходимо также медикам, поскольку сильные колебания температуры в течение суток могут указывать на наличие определенных заболеваний. С подобной задачей постоянно сталкиваются биологи, химики, физики-ядерщики и представители многих других отраслей науки и техники.

Вам понадобится

  • - термометр либо термограф;
  • - календарь наблюдений;
  • - часы с секундомером.

Инструкция

Определите интервал времени, в котором будут проводиться измерения. Он зависит от цели исследования. Например, для определения колебания температуры наружного воздуха необходимо измерять ее в течение 24 часов. На метеостанциях наблюдения обычно записывают через каждые 3 часа. Наиболее точными будут измерения, если проводить их по астрономическому времени.

В других используется иная периодичность. При исследовании работы сгорания требуется измерение температуры в интервалах, равных времени такта работы двигателя, а это тысячные доли секунды. В этих случаях либо применяют электронные регистраторы, либо температурные изменения определяются по амплитуде инфракрасного излучения. Для палеонтологов и геологов важен разброс температур на протяжении целых геологических эпох, а это миллионы лет.

Разность температур можно определить либо методом проб, либо термографическим способом. В первом случае необходимый промежуток времени разделите на равные отрезки. Измеряйте температуру в эти моменты и записывайте результаты. Этот способ хорош, когда счет идет на годы, месяцы или часы.

КГУ «Средняя школа № 10»

ГУ «Отдел образования акимата Житикаринского района»

Урок географии

«Понятие амплитуды температур. Среднесуточная и среднемесячная температура воздуха»

Класс: 6

Учитель Кудинова Людмила Николаевна

2014 г.

Тема: Понятие амплитуды температур. Среднесуточная и среднемесячная температура воздуха.

Цель урока:

1.Формировать представления учащихся о суточном ходе температур воздуха, о суточной амплитуде температуры воздуха, среднесуточной, среднемесячной температуре воздуха. Создать условия для развития навыков работы с цифровыми данными в табличной форме, анализа графиков хода температуры.

2.Развивать умения извлекать необходимую информацию, совершенствовать вычислительные навыки действий с положительными и отрицательными числами. Развитие навыков саморегулируемого обучения, умения составлять вопросы высокого порядка.

3.Способствовать воспитанию у учащихся личностных качеств: взаимопомощи, взаимоподдержки, дисциплинированности, адекватной самооценки.

Критерии успеха:

Учащиеся:

    Знают понятие амплитуды, факторы, влияющие на изменение суточного хода температуры воздуха.

    Умеют объяснять причины изменения суточного хода температур воздуха; умеют совершать действия с отрицательными и положительными числами,вычислять среднесуточную температуру и суточную амплитуду колебания температуры;

Тип урока : изучение нового материала

Оборудование : презентация, флипчарт, карточки с заданиями, тестами, сигнальные карточки, критерии оценивания.

Ход урока :

    Организационный момент. Приветствие.

Учитель: Мы продолжаем с вами изучение атмосферы.

Тема нашего урока: Понятие амплитуды. Нахождение среднесуточной и среднемесячной температуры воздуха. (запись темы в тетрадь )

Привлечение учащихся к целеполаганию:

Как вы думаете, чему мы можем научиться на уроке? Какие действия мы можем предпринять, чтобы изучить тему?

(Учащиеся отвечают: узнать, что такое амплитуда, научиться совершать действия с числами, решать задачи)

Для проверки, насколько вы готовы к изучению новой темы, я предлагаю вам выполнить следующие задания

    Актуализация опорных знаний. (Устный счет)

1) - на какую высоту поднялся самолет, если за его бортом температура - - 30 0 С, а у поверхности Земли +12 0 С? (7 км)

Какова температура воздуха за бортом самолета, летящего на высоте 4 км, если температура воздуха у земной поверхности +20 0 С?(- 4 С)

2). Работа у доски на флипчарте:

А) Вставьте пропущенные слова

Б) Найдите соответствие

Игра «Что за цифра?» (на экране)

78% - содержание азота

6 0 С – понижение температуры на каждый км

21% - содержание кислорода в составе атмосферы

1% - содержание прочих газов в составе атмосферы

18 - 20 км – мощность тропосферы над экватором

50-55 км – верхняя граница стратосферы

2 м – высота, на которой расположена будка для измерения температуры

4. ). Индивидуальный опрос (тест):4 ученика

Самоконтроль:

«5» - нет ошибок,

«4» - 1 ошибка,

«3» - 2 ошибки,

«2» - 3 и более ошибок. Ну что ж, ребята, молодцы. С заданиями вы справились

    Изучение нового материала.

Учитель: Ребята, посмотрите на доску. Тема нашего урока: Понятие амплитуды. Нахождение среднесуточной и среднемесячной температуры воздуха.

Постоянна ли температура воздуха в течение дня? (нет)

Когда наблюдается самая высокая температура? (после полудня)

От чего зависит температура воздуха? (от угла падения солнечных лучей, от высоты солнца над горизонтом, географической широты, подстилающей поверхности, движения воздушных масс)

Какой прибор необходим для измерения температуры воздуха? (Термометр).

Рассказ ученика о термометре.

Термометр изобретен очень давно. Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, утверждали, что уже в 1597 г. он устроил нечто вроде термобароскопа (термоскоп). Современный термометр состоит из тонкой трубки, куда налита жидкость (спирт или ртуть). Действие термометра основано на свойстве жидкостей при нагревании расширяться, при охлаждении сжиматься.

Шкала термометра разбита делениями. Посередине стоит значение ноль. Выше 0 0 расположены деления с положительной температурой, а ниже 0 0 с отрицательной, поэтому положительную температуру воздуха называют высокой, а отрицательную – низкой.

Разница между самой высокой и низкой температурой воздуха называется суточной амплитудой температуры воздуха.

Как же правильно определить амплитуду колебания температуры воздуха?

A = maxt 0 mint 0 .

Алгоритм определения суточной амплитуды температуры воздуха

    Найдите среди температурных показателей самую высокую температуру воздуха;

    Найдите среди температурных показателей самую низкую температуру воздуха;

3.От самой высокой температуры воздуха вычтите самую низкую температуру воздуха. Амплитуда рассчитывается по следующей формуле: A = max t 0 min t 0 .

4. Запись решения учащимися в тетрадь. +4 0 С – (–1 0 С) = 5 0 С.

Примеры на закрепление.

Хорошо, ребята, давайте немного отдохнем.

Физминутка «Солнышко лучистое»

В прогнозе погоды по телевидению или радио нам называют только одно значение (цифру) температуры воздуха. Мы уже знаем, что температура в течение дня меняется, так какое же нам температурное значение называют (утреннее, дневное, вечернее или какое-то другое)? Чтобы сравнить температуру воздуха в разные дни или объявить её населению (какой-либо одной цифрой), необходимо высчитать среднесуточную температуру воздуха.

Алгоритм определения среднесуточной температуры воздуха

1. Сложите все отрицательные показатели суточной температуры воздуха;

2. Сложите все положительные показатели температуры воздуха;

3. Сложите сумму положительных и отрицательных показателей температуры воздуха;

4. Значение полученной суммы разделите на число измерений температуры воздуха за сутки.

Решение записать в тетрадь

4 .Закрепление полученных знаний.

Практикум по группам.

А сейчас ребята, мы с вами проверим, как вы усвоили материал урока. Каждая группа учащихся получает задание. Как вы думаете, может быть нужно распределить задания внутри группы для скорейшего и правильного выполнения? (Роль консультантов выполняют Даша, Жанна, Лиза, Ульяна).

1 группа: Определить амплитуду и среднесуточную температуру воздуха в Житикаре (за 18.02.14)

Время: 6ч 12ч 18ч 24ч

Темпер. -13 -11 -10 -12

Ср.сут. t = -46:4=-11,5 А=3

2 группа: Определите среднюю годовую температуру и годовую амплитуду температур:

Ср t год. = (78° + (-60°)):12= +18°:12 = +1,5°С

А год. = +22° – (-20°) = 22°+20° = 42

3 группа: Рассчитайте среднегодовую температуру и определите амплитуду температур за год


Месяц


я


ф


м


а


м


и


и


а


с


о


н


д

Ср.

годовая t C


Ср.температура


-16


-12


-5


4


11


18


22


16


10


5


-5


-12

Ср. годовая = 80-56=36:12=3 СА= 38

4 группа: Рассчитайте среднемесячную температуру воздуха и найдите амплитуду колебаний температуры.

Индивидуальное задание у доски

Рассчитайте среднесуточную температуру и амплитуду температур


Часы


0


3


6


9


12


15


18


21


Температура, 0 С


-1


-4


-6


-2


0


+3


0


-2

Среднесуточная -1,5 С А= 9

(проверка правильности выполнения учителем и консультантами)

4.Оценивание. Анализ деятельности учащихся на уроке.

В начале урока мы с вами ставили задачи, которые планировали решить во время урока. Используя предложенные критерии, оцените свою индивидуальную работу на уроке, а также работу в составе группы. Итак, какие оценки вы себе поставили? Почему вы себе поставили такую оценку?

(учащиеся оценивают свою работу согласно выработанным критериям)

5.Домашнее задание:

обязательное: понаблюдать за погодой, измерить температуру воздуха, рассчитать амплитуду и среднесуточную температуру;

по желанию: составить кроссворд «Атмосфера»

6.Рефлексия: Какая цель стояла перед нами?

Что нового вы узнали сегодня на уроке? Как вы думаете, нужны математические знания в географии?

Понравилась вам такая форма проведения урока? Мне очень важно Ваше мнение . Рефлексия «Две звезды и пожелание» (на стикерах), учащиеся прикрепляют к корзинке воздушного шара.

Спасибо за сотрудничество!

Температура

Температура - степень нагретости атмосферного воздуха.

Нагрев атмосферного воздуха происходит при попадании солнечных лучей на земную поверхность, от которой нагревается и приповерхностный воздух. Но на различных широтах температура от солнечных лучей будет разной, что зависит от угла паденя солнечных лучей:

1. В жарком поясе угол падения лучей на экваторе всегда составляет 90°, а чем ближе к тропикам – тем ближе он к показателю 60°.

2. В умеренных поясах угол падения лучей уменьшается от 60° до 30°.

3. В холодных поясах – от 30° до 0°.

Температура уменьшается на 6 °С с каждым километром подъема , что связано с отдалением от поверхности.

год в атмосферу Земли поступает значительное количество загрязняющих веществ, увеличивается количество углекислого газа и т.п. Эти проблемы способствуют возникновению парникового эффекта (процесса повышения температуры в атмосфере). Решить проблемы загрязнения атмосферы помогут комплексные меры, которые будут выполнять все страны мира: создание безотходных производств, очистительных сооружений, переход транспорта на более чистые, экологические виды топлива т.п. 2. Измерение температуры воздуха

Температуру воздуха измеряют с помощью термометра. Чтобы правильно измерить температуру воздуха, термометр надо установить в тени на небольшом расстоянии от почвы и других предметов, которые могут повлиять на измерения.

Рис. 1. Термометр

Наиболее точную информацию о температуре воздуха и ее изменениях получают со спутников, с метеостанций. На метеостанциях термометр расположен в специальной будке на высоте 2 метра для более точных и правильных измерений.

Рис. 2. Метеостанция

Изменение температуры воздуха

Температура воздуха меняется в течение суток, года и в другие временные промежутки. Самые низкие температуры наблюдаются в 4-6 часов утра, это связано с тем, что воздух, нагретый за день, ночью постепенно остывает, и самые низкие температуры приходятся именно на эти часы. Самые высокие температуры воздуха наблюдаются в 14-16 часов. Солнечные лучи утром постепенно прогревают остывший за ночь воздух, в 12 часов Солнце светит ярче всего, находясь в зените, прогревая поверхность Земли (подстилающую поверхность) и воздух. В 14-16 часов воздух получает тепло не только от солнечных лучей, но и от нагретой поверхности, достигая максимальных температур.

Амплитуда температуры – разница между самой высокой и самой низкой температурой воздуха за определенный период времени. В России наибольшие амплитуды колебания температуры воздуха наблюдаются весной и летом в ясную погоду.

Таким образом, главная причина изменения температуры воздуха – угол падения солнечных лучей, чем более отвесно они падают на земную поверхность, тем лучше прогревают ее.

Рис. 3. Углы падения солнечных лучей (при положении Солнца 2 лучи лучше прогревают земную поверхность, нежели при положении 1)

Кроме солнечной радиации, на температуру воздуха влияют воздушные массы. Например, если воздух пришел с Северного Ледовитого океана, он принесет с собой понижение температуры воздуха.

Также на температуру воздуха влияют подстилающая поверхность, время года, близость океана, рельеф. Например, при подъеме на каждый километр температура воздуха понижается на 1 градус.

Рис. 4. Изменение температуры воздуха в зависимости от высоты в Европе

Средняя температура воздуха – среднеарифметическое значение температур за определенное количество наблюдений (т.е. надо сложить показатели измерений температур и разделить на их количество).Например, +7, +5, +3, -1, +1, все эти температуры складываем и делим на количество измерений: (7+5+3+(-1)+1) : 5 = 3.

По наблюдениям и средним измерениям строят график суточного хода температуры воздуха. Суточный ход температуры воздуха – изменение температуры воздуха в течение суток.

Рис. 5. График суточного хода температуры воздуха

Изобретение термометра

История термодинамики началась, когда в 1592 году Галилео Галилей создал первый прибор для наблюдений за изменениями температуры, назвав его термоскопом. Термоскоп представлял собой небольшой стеклянный шарик с припаянной стеклянной трубкой. Шарик нагревали, а конец трубки опускали в воду. Когда шарик охлаждался, давление в нем уменьшалось, и вода в трубке под действием атмосферного давления поднималась на определенную высоту вверх. При потеплении уровень воды в трубке опускался вниз. Недостатком прибора было то, что по нему можно было судить только об относительной степени нагрева или охлаждения тела, так как шкалы у него еще не было.

Позднее флорентийские ученые усовершенствовали термоскоп Галилея, добавив к нему шкалу из бусин и откачав из шарика воздух.

В XVII веке воздушный термоскоп был преобразован в спиртовой флорентийским ученым Торричелли. Прибор был перевернут шариком вниз, сосуд с водой удалили, а в трубку налили спирт. Действие прибора основывалось на расширении спирта при нагревании: теперь показания не зависели от атмосферного давления. Это был один из первых жидкостных термометров.

На тот момент показания приборов еще не согласовывались друг с другом, поскольку никакой конкретной системы при градуировке шкал не учитывалось. В 1694 году Карло Ренальдини предложил принять в качестве двух крайних точек температуру таяния льда и температуру кипения воды.

В 1714 году Д. Г. Фаренгейт изготовил ртутный термометр.

В 1742 году шведский ученый Андрес Цельсий предложил шкалу для ртутного термометра, в которой промежуток между крайними точками был разделен на 100 градусов. При этом сначала температура кипения воды была обозначена как 0 градусов, а температура таяния льда как 100 градусов.

Ломоносовым был предложен жидкостный термометр, имеющий шкалу со 150 делениями от точки плавления льда до точки кипения воды.

Насчитывается несколько температурных шкал с различными точками отсчета (например, шкалы Цельсия, Кельвина).

Рис. 6. Различные температурные шкалы

География суточных амплитуд температуры

Суточные амплитуды воздуха различны в разных частях Земли. Амплитуда ниже над океаном и выше над сушей, и чем дальше от океана, тем больше амплитуда температур. Наибольшие амплитуды температур наблюдаются в тропических пустынях.

Признаки изменения погоды

Существуют признаки хорошей погоды (ясное небо, отсутствие ветра, легкие перистые облака, бело-желтый цвет Солнца при заходе) и признаки плохой погоды (незначительная разница температур между ночью и днем, высокая влажность, сильный ветер).

Список литературы

Основная

1. Начальный курс географии: учеб. для 6 кл. общеобразоват. учреждений / Т.П. Герасимова, Н.П. Неклюкова. – 10-е изд., стереотип. – М.: Дрофа, 2010. – 176 с.

2. География. 6 кл.: атлас. – 3-е изд., стереотип. – М.: Дрофа; ДИК, 2011. – 32 с.

3. География. 6 кл.: атлас. – 4-е изд., стереотип. – М.: Дрофа, ДИК, 2013. – 32 с.

4. География. 6 кл.: конт. карты: М.: ДИК, Дрофа, 2012. – 16 с.

Энциклопедии, словари, справочники и статистические сборники

1. География. Современная иллюстрированная энциклопедия / А.П. Горкин. – М.: Росмэн-Пресс, 2006. – 624 с.

1.Федеральный институт педагогических измерений ().

2. Русское географическое общество ().

3.Geografia.ru ().

Вы можете вычислить самостоятельно. Проведите необходимые измерения. На метеостанциях обычно замеряют температуру наружного воздуха 8 раз в сутки, то есть через каждые три часа, начиная с полуночи.

Найдите максимальное и минимальное значения. Вычтите из большего меньшее. Если вы проводите измерения летом, то оба значения будут положительными. Например, самая высокая температура у вас +25°С, самая низкая - +10°С. Отняв от первого числа второе, вы получите 15°С. Это и есть амплитуда суточной температуры в конкретный день.

Для вычисления амплитуд в и зимний период пользуйтесь теми же способами, которые вы применяете при решении математических задач с положительными и числами. Например, если у вас днем температура 10°С, а ночью опускается до -10°С, действия будут аналогичны тем, что описаны в первом случае. Из 10° вычтите -10, то есть А=10-(-10)=10+10=20.

Амплитуда месячных или годовых температур высчитывается таким же способом. Среди всех значений найдите максимальное или минимальное, а затем вычтите из первого второе.

Можно посчитать и амплитуду среднесуточных температур. Сначала вычислите средние значения, например за каждые сутки. Чтобы найти среднесуточную температуру, необходимо сложить все значения и разделить полученную сумму на количество измерений. Чем чаще вы смотрите на термометр, тем выше будет точность результата. Хотя обычно для вычисления среднесуточной температуры бывает достаточно 8 измерений, как и для определения амплитуды.

Выпишите все среднесуточные температуры за месяц. Найдите самое большое значение и самое маленькое. Вычтите из первого второе. Годовая амплитуда рассчитывается так же.

Полезный совет

Для определения амплитуды температур желательно пользоваться одним и тем же термометром. Это может быть как обычный уличный спиртовой градусник, так и домашняя цифровая метеостанция. Такое устройство сочетает в себе сразу несколько приборов. По нему вы можете рассчитать и разные другие амплитуды, например влажности и давления.

Если вы не очень уверенно оперируете с положительными и отрицательными числами, сделайте себе шкалу, наподобие числовой линейки. Отметьте на ней точку 0. Поделите правую и левую части на отрезки равной длины. В правой части у каждой отметки проставьте положительные числа, в левой - отрицательные в зеркальном отображении. Откложите вправо количество градусов выше нуля, влево - ниже. Посчитайте, сколько отрезков находится между этими точками.

Источники:

  • как рассчитать амплитуду

Амплитудой называется разница между экстремальными значениями той или иной величины, в данном случае температуры . Это важная характеристика климата той или иной местности. Умение вычислять этот показатель необходимо также медикам, поскольку сильные колебания температуры в течение суток могут указывать на наличие определенных заболеваний. С подобной задачей постоянно сталкиваются биологи, химики, физики-ядерщики и представители многих других отраслей науки и техники.

Вам понадобится

  • - термометр либо термограф;
  • - календарь наблюдений;
  • - часы с секундомером.

Инструкция

Определите интервал времени, в котором будут проводиться измерения. Он зависит от цели исследования. Например, для определения колебания температуры наружного воздуха необходимо измерять ее в течение 24 часов. На метеостанциях наблюдения обычно записывают через каждые 3 часа. Наиболее точными будут измерения, если проводить их по астрономическому времени.

В других используется иная периодичность. При исследовании работы сгорания требуется измерение температуры в интервалах, равных времени такта работы двигателя, а это тысячные доли секунды. В этих случаях либо применяют электронные регистраторы, либо температурные изменения определяются по амплитуде инфракрасного излучения. Для палеонтологов и геологов важен разброс температур на протяжении целых геологических эпох, а это миллионы лет.

Разность температур можно определить либо методом проб, либо термографическим способом. В первом случае необходимый промежуток времени разделите на равные отрезки. Измеряйте температуру в эти моменты и записывайте результаты. Этот способ хорош, когда счет идет на годы, месяцы или часы.

По отмеченным данным найдите самую высокую температуру и самую низкую. Вычтите из второй первую. Вы получите числовое значение амплитуды. Необходимо проводить измерения одним и тем же поверенным термометром.

Очень часто требуется определить амплитуду не только абсолютных значений, но и средних величин. Для этого необходимы длительные наблюдения и вычисления средних температур за или год. Для определения температуры наружного воздуха проведите ряд наблюдений, запишите результаты, сложите их и разделите на количество наблюдений. Точно так же вычисляйте среднесуточную температуру весь месяц. Найдите самое большое и ее значения, вычтите из первого второе. Таким образом, вы получите амплитуду среднесуточных температур за данный период.

Если период составляет доли секунды, необходимо использовать термограф. Он должен быть в школьном кабинете физики либо . В этом случае в механическом приборе происходит непрерывная запись данных о температуре на движущуюся ленту или вращающийся барабан. На ленте механического термографа есть координатная сетка, на которой отображаются как времени, так и численные значения температур. В электронных приборах запись идет на различные носители, в том числе цифровые.

В обоих случаях колебания температуры графически выглядят как кривая с пиками и впадинами, расположенными поперек временной оси. На этой кривой можно взять любой интервал и вычислить в нем амплитуду . Электронные приборы позволяют достичь большего быстродействия при измерениях, а следовательно и большей точности. Кроме того, цифровые данные могут быть непосредственно использованы программой обработки, которая автоматически вычисляет амплитудные значения. Такой метод применяется на долговременных автоматических метеостанциях, а также для измерений в условиях, непригодных для пребывания . Например, при измерениях в активной зоне ядерного реактора. Вне зависимости от того, сами ли вы проводите вычисления или это за вас прибор, способ остается тем же самым, что и в случае с дискретным вариантом измерений.

Для нахождения амплитуды необходимо взять линейку или другое приспособление для измерения расстояний и измерить наибольшее отклонение от положения равновесия. В случае с математическим маятником нужно измерить его длину и высоту подъема. Для измерения амплитудных значений напряжения и силы переменного тока нужно будет получить показания вольтметра и амперметра.

Вам понадобится

  • линейка, рулетка, вольтметр и амперметр для переменного тока

Все воздушные массы зимой холоднее, а летом теплее. По­этому температура воздуха в каждом отдельном месте меняется вгодовом ходе: средние месячные температуры в зимние месяцы ниже, а в летние – выше. Если мы вычислим для какого-либо места средние месячные температуры по многолетнему ряду на­блюдений, то получим, что эти средние месячные температуры плавно меняются от одного месяца к другому, повышаясь от ян­варя или февраля к июлю или августу и затем понижаясь (рис. 5).

Рис. 5. Годовой ход температуры воз­духа на широте 62°

Разность средних месячных температур самого теплого и самого холодного месяца называют годовой амплитудой темпе­ратуры воздуха . В климатологии рассматриваются годовые амплитуды температуры, вычисленные по многолетнимсредним месячным температурам.

Годовая амплитуда температуры воздуха, прежде всего, растет с географической широтой. На экваторе приток солнечной ра­диации меняется в течение года очень мало; по направлению к полюсу различия в поступлении солнечной радиации между зимой и летом возрастают, а вместе с тем возрастает и годовая амплитуда температуры воздуха. Над океаном, вдали от берегов, это широтное изменение годовой амплитуды, однако, неве­лико. Если бы Земля была сплошь покрыта океаном, свободным ото льда, то годовая амплитуда температуры воздуха меня­лась бы от нуля на экваторе до 5-6° на полюсе. В действи­тельности над южной частью Тихого океана, вдали от матери­ков, годовая амплитуда между 20 и 60° широты увеличивается приблизительно с 3 до 5°. Однако над более узкой северной частью Тихого океана, где больше влия­ние соседних материков, амплитуда между 20 и 60° широты растет уже с 3 до 15°.

Годовые амплитуды температуры над сушей значительно больше, чем над морем(так же как и суточные амплитуды). Даже над сравнительно небольшими материковы­ми массивами южного полушария они превышают 15°, а под широтой 60° на материке Азии, в Якутии, они достигают 60°.

Но малые амплитуды наблюдаются и во многих областях над сушей, даже вдали от береговой линии, если туда часто приходят воздушные массы с моря, например в Западной Европе. Напротив, повышенные амплитуды наблюдаются и над океаном, там, куда часто попадают воздушные массы с материка, напри­мер в западных частях океанов северного полушария. Стало быть, величина годовой амплитуды температуры зависит не просто от характера подстилающей поверхности или от близости данного места к береговой линии; она зависит от повторяемости в данном месте воздушных масс морского и континен­тального происхождения, т.е. от условий общей циркуляции атмосферы.

Не только моря, но и большие озерауменьшают годовую амплитуду температуры воздуха и таким образом смягчают климат.

С высотойгодовая амплитуда температуры убывает. В горах внетропического пояса это убывание в среднем 2° на каждый километр высоты. В свободной атмосфере оно больше. Однако во внетропических широтах значительный годовой ход температуры остается даже в верхней тропосфере и в стратосфере. Он определяется сезонным изменением условий поглощения и отдачи радиации не только земной поверхностью, но и самим воздухом.

В зависимости от широты и континентальности можно вы­делить следующие типы годового хода температуры (рис. 6).

Рис. 6. Некоторые типы годового хода температуры воздуха: 1 - экваториальный,
2 - тропический в области муссонов, 3 - морской в умеренном поясе, 4 - континентальный в умеренном поясе

Экваториальный тип

Малая амплитуда, так как различия в поступлении солнечной радиации в течение года невелики, а время наибольшего притока радиации на границу атмосферы совпадает с наибольшей облачностью и дождями. Внутри материков, амплитуда порядка 5°, на побережьях менее 3°, на океа­нах 1° и менее. Обнаруживаются, хотя не всегда отчетливо, два максимума температуры после стояний солнца в зените (равноденствий) и два более холодных сезона при наиболее низких положениях солнца (солнцестояниях).

Тропический тип

Амплитуда больше, чем в экваториальном типе: на побережьях порядка 5°, внутри материка 10-15°. Один максимум и один минимум в течение года, по большей части после наивысшего и наинизшего стояния солнца. В муссонных областях максимум в этом типе наблюдается перед началом летнего муссона, который приносит некоторое снижение температуры.

Тип умеренного пояса

Крайние значения наблюдаются здесь после солнцестояний, причем в морском климате они запаздывают по сравнению с континентальным. В северном полушарии минимум наблюдается над сушей в январе, а над морем – в феврале или марте; максимум над сушей в июле, а над морем - в августе и иногда даже в сентябре. Это легко объясняется различиями в на­гревании и теплоотдаче суши и моря.

Континентальный тип в умеренном поясе

Для него особенно характерна холодная зима, однако и лето жарче, чем в мор­ском климате. Переходные сезоны принимают здесь самостоятельный характер, причем в типично морском климате весна холоднее осени, а в континентальном – теплее. Однако в материковых областях с обильным снежным покровом (например, на Европейской территории СНГ и в Западной Сибири), где много тепла идет на таяние снега, весна, как в морском климате, холоднее осени. Годовые амплитуды порядка 25-40°, а в Азии могут превышать 60°.

Морской тип в умеренном поясе

Годовые амплитуды даже в морском климате умеренного пояса порядка 10-15°.

В умеренном поясе можно различать подзоны: субтропиче­скую, собственно умеренную, субполярную.Переходные сезоны хорошо выражены только в средней из них; в ней же годовые амплитуды имеют наибольшие различия для континентального и морского климата.

Полярный тип

Минимум в годовом ходе перемещается на время появления солнца над горизонтом, после длительной по­лярной ночи, т.е. в северном полушарии на февраль-март, в южном – на август-сентябрь; максимум в северном полушарии наблюдается в июле, в южном - в январе или декабре; амплитуда на суше (Гренландия, Антарктида) велика - порядка 30-40°. В морском климате полярных широт - на островах и на окраинах материков - она меньше, но все же порядка 20◦ и более.