Страхование

Вальд последовательный анализ. Курсовая работа: Риск и страхование

Рассмотрим еще раз вопрос, который мы довольно подробно обсудили раньше, в гл. 37 (вып. 3). Сейчас мы используем идею об амплитуде во всей ее мощи, чтобы показать вам, как она работает. Вернемся к старому опыту, изображенному на фиг. 1.1, добавив к нему еще источник света и поместив его за щелями (ср. фиг. 37.4 гл. 37). В гл. 37 мы обнаружили следующий примечательный результат. Если мы заглядывали за щель 1 и замечали фотоны, рассеивавшиеся где-то за ней, то распределение вероятности того, что электрон попадал в х при одновременном наблюдении этих фотонов, было в точности такое же, как если бы щель 2 была закрыта. Суммарное распределение для электронов, которые были «замечены» либо у щели 1, либо у щели 2, было суммой отдельных распределений и было совсем не похоже на распределение, которое получалось, когда свет бывал выключен. По крайней мере так бывало, когда использовался свет с малой длиной волн. Когда длина волны начинала расти и у нас исчезала уверенность в том, у какой из щелей произошло рассеяние света, распределение становилось похожим на то, которое бывало при выключенном свете.

Посмотрим теперь, что здесь происходит, используя наши новые обозначения и принципы композиции амплитуд. Чтобы упростить запись, можно через φ 1 опять обозначить амплитуду того, что электрон придет в х через щель 1, т. е.

Сходным же образом φ 2 будет обозначать амплитуду того, что электрон достигнет детектора через щель 2:

Это — амплитуды проникновения электрона через щель и появления в х, когда света нет. А если свет включен, мы поставим себе вопрос: какова амплитуда процесса, в котором вначале электрон выходит из s , а фотон испускается источником света L , а в конце электрон оказывается в х, а фотон обнаруживается у щели 1? Предположим, что мы с помощью счетчика D 1 наблюдаем фотон у щели 1 (фиг. 1.3), а такой же счетчик D 2 считает фотоны, рассеянные у щели 2. Тогда можно говорить об амплитуде появления фотона в счетчике D 1 а электрона в x и об амплитуде появления фотона в счетчике D 2 , а электрона в х. Попробуем их подсчитать.

Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда <1 | s> того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик D 1 . Обозначим эту амплитуду через а. Затем имеется амплитуда | 1> того, что электрон переходит от щели 1 к электронному счетчику в х. Амплитуда того, что электрон перейдет от s к х через щель 1 и рассеет фотон в счетчик D 1 , тогда равна

Или в наших прежних обозначениях это просто aφ 1 .

Имеется также некоторая амплитуда того, что электрон, проходя сквозь щель 2, рассеет фотон в счетчик D 1 . Вы скажете: «Это невозможно; как он может рассеяться в счетчик D 1 , если тот смотрит прямо в щель 1?» Если длина волны достаточно велика, появляются дифракционные эффекты, и это становится возможным. Конечно, если прибор будет собран хорошо и если используются лишь фотоны с короткой длиной волны, то амплитуда того, что фотон рассеется в счетчик D 1 от электрона в щели 2, станет очень маленькой. Но для общности рассуждения мы учтем тот факт, что такая амплитуда всегда имеется, и обозначим ее через b. Тогда амплитуда того, что электрон проходит через щель 2 и рассеивает фотон в счетчик D 1 , есть

Амплитуда обнаружения электрона в x и фотона в счетчике D 1 есть сумма двух слагаемых, по одному для каждого мыслимого пути электрона. Каждое из них в свою очередь составлено из двух множителей: первого, выражающего, что электрон прошел сквозь щель, и второго — что фотон рассеян таким электроном в счетчик D 1 ; мы имеем

Аналогичное выражение можно получить и для случая, когда фотон будет обнаружен другим счетчиком D 2 . Если допустить для простоты, что система симметрична, то а будет также амплитудой попадания фотона в счетчик D 2 , когда электрон проскакивает через щель 2, а b — амплитудой попадания фотона в счетчик D 2 , когда электрон проходит через щель 1. Соответствующая полная амплитуда — амплитуда того, что фотон окажется в счетчике D 2 , а электрон в x,— равна

Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой вероятностью будут получаться отсчеты в счетчике D 1 при попадании электрона в x. Это будет квадрат модуля амплитуды, даваемой формулой (1.8), т. е. попросту | aφ 1 + bφ 2 | 2 . Поглядим на это выражение внимательнее. Прежде всего, если b = 0 (мы хотели бы, чтобы наш прибор работал именно так), ответ просто равен | φ 1 | 2 с множителем | а | 2 . Это как раз то распределение вероятностей, которое получилось бы при наличии лишь одной щели, как показано на фиг. 1.4, а. С другой стороны, если длина волны велика, рассеяние за щелью 2 в счетчик D 1 может стать почти таким же, как за щелью 1. Хотя в а и b могут входить какие-то фазы, возьмем самый простой случаи, когда обе фазы одинаковы. Если а практически совпадает с b, то полная вероятность обращается в | φ 1 + φ 1 | 2 , умноженное на | а | 2 , потому что общий множитель а можно вынести. Но тогда выходит то самое распределение вероятностей, которое получилось бы, если бы фотонов вовсе не было. Следовательно, когда длина волны очень велика (и детектировать фотоны бесполезно), вы возвращаетесь к первоначальной кривой распределения, на которой видны интерференционные эффекты, как показано на фиг. 1.4,б. Когда же детектирование частично все же оказывается эффективным, возникает интерференция между большим количеством φ 1 и малым количеством φ 2 и вы получаете промежуточное распределение, такое, какое намечено на фиг. 1.4,в. Само собой разумеется, если нас заинтересуют одновременные отсчеты фотонов в счетчике D 2 и электронов в х, то мы получим тот же результат. Если вы вспомните рассуждения гл. 37 (вып. 3), то увидите, что эти результаты описывают количественно то, что было сказано там.

Нам хотелось бы подчеркнуть очень важное обстоятельство и предостеречь от часто допускаемой ошибки. Пусть вас интересует только амплитуда того, что электрон попадает в х, причем вам безразлично, в какой счетчик попал фотон — в D 1 или в D 2 . Должны ли вы складывать амплитуды (1.8) и (1.9)? Нет! Никогда не складывайте амплитуды разных, отличных друг от друга конечных состояний. Как только фотон был воспринят одним из фотонных счетчиков, мы всегда, если надо, можем узнать, не возмущая больше системы, какая из альтернатив (взаимоисключающих событий) реализовалась. У каждой альтернативы есть своя вероятность, полностью независимая от другой. Повторяем, не складывайте амплитуд для различных конечных условий (под «конечным» мы понимаем тот момент, когда нас интересует вероятность, т. е. когда опыт «закончен»). Зато нужно складывать амплитуды для различных неразличимых альтернатив в ходе самого опыта, прежде чем целиком закончится процесс. В конце процесса вы можете, если хотите, сказать, что вы «не желаете смотреть на фотон». Это ваше личное дело, но все же амплитуды складывать нельзя. Природа не знает, на что вы смотрите, на что нет, она ведет себя так, как ей положено, и ей безразлично, интересуют ли вас ее данные или нет. Так что мы не должны складывать амплитуды. Мы сперва возводим в квадрат модули амплитуд для всех возможных разных конечных состояний, а затем уж складываем. Правильный результат для электрона в x и фотона то ли в D 1 , то ли в D 2 таков.

В предыдущих разделах данной главы предполагалось, что объем выборки, на основе которой выносится решение, фиксирован. В § 5.3 уже отмечалось, что значение риска, связанного с принятием решений, уменьшается при увеличении числа наблюдений. Вообще механизм вынесения решений может быть «выбран таким образом, чтобы» кроме основных решений, он позволял определять и необходимый объем выборки. Можно ожидать, что в этом случае удалось бы сократить время от начала наблюдения до принятия решения при том же самом значении было бы построено правило выбора решения, которое следовало бы признать лучше правила, основанного на выборке фиксированного объема. В данном параграфе будут изучены два таких последовательных правила (выбора решения для простого бинарного случая. Одно из них называется байесовским, а другое - последовательным правилом Вальда .

Напомним, что при проверке гипотез по выборке фиксированного объема отношение правдоподобия сравнивается с порогом . При последовательном анализе используются два порога и , которые могут изменяться с изменением числа наблюдений . Если на -м шаге отношение правдоподобия больше порога , то принимается гипотеза . Если оно меньше, чем , то принимается гипотеза . Если же значение отношения правдоподобия лежит между этими порогами, то необходимо произвести очередное наблюдение.

Отношение правдоподобия

где - совместная плотность вероятности выборки при гипотезе , (полученной за первые шагов. Для вычисления порога непоследовательного правила выбора решения необходимо знать априорные вероятности гипотез и . Аналогично для определения порогов последовательного правила на -м шаге необходимо знать априорные вероятности и этих гипотез перед -м шагом. Эти априорные вероятности можно рассматривать как апостериорные, вычисляемые после первых шагов. Их можно определить из соотношений:

Поделив обе части последнего выражения на соответствующие части предыдущего, получим простое выражение для отношения априорных вероятностей на -м шаге

. (5.109)

В качестве начального значения в этом соотношении следует выбрать отношение , которое использовалось бы при построении непоследовательного правила. На каждом шаге отношение априорных вероятностей подстраивается путем умножения на отношение правдоподобия :

. (5.110)

зависящее только от результатов наблюдений на предшествующих шагах. Если элементы выборки независимы, то отношение правдоподобия для «всей выборки можно записать как произведение отношений правдоподобия для наблюдений на разных шагах:

то рекуррентное соотношение (5.109) можно записать в следующей полезной форме:

. (5.113)

Определить среднее значение потерь при наличии решений о продолжении наблюдений (что необходимо при рассмотрении байесовского последовательного правила) довольно трудно. Поэтому обратимся к более простому подходу, предложенному Вальдом . Это правило, называемое обычно последовательным правилом Вальда, является модификацией непоследовательного правила Неймана-Пирсона.

Покажем, что пороги и последовательного правила Вальда связаны простыми соотношениями с вероятностями ложной тревоги и пропуска сигнала. Предположим, что при отношение правдоподобия оказалось равным порогу .

Следовательно, на этом шаге принимается гипотеза и

. (5.114)

Умножая обе части последнего равенства на величину и интегрируя в области принятия гипотезы получим

Это равенство можно записать следующим образом:

Если отношение правдоподобия равно значению порога , то принимается гипотеза . Поскольку при этом

, (5.117)

то нетрудно установить равенство, аналогичное равенству (5.116)

Из равенств (5.116) и (5.118) следует, что для обеспечения заданных значений вероятностей ложной тревоги и пропуска сигнала следует выбрать следующие значения порогов:

(5.119)

Из этих выражений, в частности, следует, что значения порогов последовательного правила Вальда не зависят от номера наблюдения , если вероятности и не зависят от .

При использовании последовательного правила объем выборки, при котором принимается одна из рассмотренных гипотез, оказывается случайным (можно показать, что одна из гипотез всегда принимается в результате конечного числа шагов). Поэтому желательно определить хотя бы среднее значение необходимого числа наблюдений. Предположим, что пересечение порогов невозможно Тогда существуют всего две возможности при завершении проверки: достигается либо порог , либо порог . Поскольку при этом может быть справедливой либо гипотеза , либо гипотеза , то возможны следующие четыре комбинации при окончании проверки на -м шаге:

(5.120)

Среднее значение отношения правдоподобия при окончании наблюдений (при объеме выборки )

(5.121)

Вычислим теперь отношение правдоподобия для , предположив для простоты, что элементы выборки независимы и одинаково распределены. В этом случае справедливо представление (5.111) при . Поэтому можно записать

Правую часть этого равенства можно рассматривать как произведение двух независимых случайных величин. Вычисляя натуральный логарифм от обеих частей этого равенства, получим

Найдем теперь математические ожидания обеих частей полученного равенства:

Здесь предполагается, что математическое ожидание не зависит от номера наблюдения . Равенство (5.124) записано с учетом того, что

Формулу (5.121) можно записать в несколько ином виде:

Учитывая теперь равенство (5.125), для математического ожидания объема выборки получаем

(5.127)

Интересно сравнить последовательное правило с аналогичным правилом, использующим выборку фиксированного объема. Такое сравнение для задачи с нормальными случайными величинами, дисперсии которых известны и одинаковы при рассматриваемых гипотезах, проведено в примере 5.5. Результаты сравнения для случая непрерывного времени будут приведены позже.

Пример 5.5 . Снова рассмотрим простую задачу различения двух гипотез:

где положительный параметр известен, т.е. гипотеза о среднем значении нормальной случайной величины с известной дисперсией проверяется против простой альтернативы. Как уже отмечалось ранее, при отыскании правила различения гипотез можно использовать различные подходы. Найдем теперь последовательное правило выбора решения. Ради простоты будем предполагать, что элементы выборки независимы (иногда в таком случае говорят, что шум измерения белый)

Согласно ф-ле (5.106) отношение правдоподобия

Значения порогов последовательного правила можно вычислить по ф-ле (5.119), если задать и считать постоянными вероятности ложной тревоги и пропуска сигнала, так что

Таким образом, последовательное правило выбора решения можно записать следующим образом если

,

то принимается гипотеза , если

,

то следует провести еще одно наблюдение, если

,

то принимается гипотеза .

Как и при выборке фиксированного объема, функцию от выборки можно рассматривать как достаточную статистику Пороги построенного таким образом последовательного правила изменяются с ростом номера наблюдения, (см рис.5.9). Разница между значениями порогов постоянна и равна

.

Рис.5.9 Пороги как функции числа наблюдений, тангенс угла наклона соответствующих прямых равен

Так как , то

Средний объем выборки, необходимой для принятия одной из рассматриваемых гипотез, можно вычислить по ф-ле (5.127) В результате получаем

Сравним теперь средний объем выборки, требуемый для принятия окончательного решения с помощью последовательного правила, с объемом выборки, который необходим для достижения тех же значений вероятностей ложной тревоги и пропуска сигнала при применении непоследовательного правила В примере 5.2 уже было показано, что для рассмотренного там непоследовательного правила выбора решения можно записать

;

,

где порог при использовании достаточной статистики определяется соотношением , а - порог этого правила. Зададим теперь некоторые значения вероятностей ложной тревоги и пропуска сигнала для этого непоследовательного правила Неймана-Пирсона и найдем требуемый объем выборки. Из трех предыдущих равенств получаем

Отсюда объем выборки, необходимый для обеспечения заданных вероятностей ошибок при использовании правила Неймана-Пирсона,

.

Это выражение получено из двух предыдущих равенств путем исключения переменной . Таким образом, для обоих рассматриваемых правил необходимое число наблюдений растет с увеличением дисперсии и уменьшается с ростом .

Интересно отметить, что объем выборки явно не зависит от порога правила , как это следовало бы ожидать, поскольку порог должен выбираться так, чтобы обеспечить заданные значения вероятностей и . Особенно важным является отношение . Значение этого отношения при заданных вероятностях и зависит от того, какая из гипотез справедлива. На рис 5.10 приведены графики изменения этого отношения при гипотезе .

Рис.5.10 Отношение объема выборки непоследовательного правила к среднему объему выборки последовательного правила при вероятностях ложной тревоги и пропуска сигнала, одинаковых для обоих правил, справедлива гипотеза

Оказывается что при использован и последовательного правила требуется в среднем меньший объем выборки, чем для непоследовательного. И эта экономия среднего числа наблюдений становится существенной при малых значениях вероятностей и .

Пример 5.6. Рассмотрим теперь задачу предыдущего примера, предположив, однако, что число отсчетов значений наблюдаемого процесса на конечном интервале времени может быть неограниченно увеличено. Это позволит построить последовательное правило выбора решения при непрерывном времени. Рассматриваемые гипотезы можно описать следующим образом:

где значение параметра известно, a - стационарный белый нормальный шум, среднее значение которого равно нулю, а ковариационная функция

Начнем с отсчетов непрерывного наблюдаемого процесса в дискретные моменты времени и примем, что

т.е. при любом элементы выборки предполагаются независимыми. Для этого частного случая отношение правдоподобия, рассматривавшееся в предыдущем примере, примет вид

Полученные в этом разделе соотношения можно легко модифицировать с тем, чтобы охватить задачи проверки сложных гипотез с помощью последовательных правил. Последовательность рассуждений при этом полностью совпадает с той, которая подробно описана в § 5.4.

Здесь следует использовать отношение правдоподобия

,
которое при наличии случайного параметра можно записать следующим образом:

. (5.128)

Последовательное правило проверки сложных гипотез после этого строится, как последовательное правило проверки соответствующих простых гипотез.

Вероятности ложной тревоги и пропуска сигнала в этом случае зависят от значения параметра, таr как

, (5.133)

в котором оценки максимального правдоподобия неизвестного параметра отыскиваются путем максимизации соответствующих условных плотностей вероятности но допустимым областям значений при фиксированной выборке .

Можно рассмотреть также задачу проверки нескольких гипотез с помощью последовательного правила. При этом необходимо ввести вероятности нескольких ошибок, которые служат аналогами вероятностей ложного обнаружения и пропуска сигнала. Соотношения, получающиеся при решении этой задачи, полностью аналогичны тем, которые были получены для бинарного случая.

Поскольку объем выборки, используемой для вынесения окончательного решения с помощью последовательного правила, является случайной величиной с математическим ожиданием то может оказаться необходимым ограничить максимально допустимое число наблюдений или время наблюдения. То есть, если после получения наблюдений окончательное решение с помощью последовательного правила не принято, то для выбора одной из рассматривающихся гипотез используется другое правило:

Вальд указал границы для вероятностей ложной тревоги и пропуска сигнала подобных усеченных последовательных правил.

В примерах данного раздела были рассмотрены простые задачи последовательного анализа для нормальных случайных величин. Теперь перейдем к анализу более полезного варианта этой задачи, который будет играть очень важную роль при изложении в гл. 7 результатов, полученных Калманом при решении задач фильтрации.

Рассмотрим последовательную процедуру проверки гипотез. Все предыдущие правила проверки двух гипотез были основаны на фиксированном числе испытаний, то есть сначала проводится измерений, строится отношение правдоподобия и затем оно сравнивается с порогом. С точки зрения минимального значения среднего числа испытаний (для ускорения процесса записи выборки), А. Вальд предложил и обосновал последовательный анализ измеряемых значений, т.е. обработка данных проводится по мере поступления новых измерений.

После каждого испытания
строится отношение правдоподобия
, которое сравнивается с двумя порогамии, то есть проверяется условие

(4.23)

При выполнении условия

и
(4.24)

принимается решение о верности гипотезы
(гипотеза
отклоняется). А при выполнении условия

и
(4.25)

принимается решение о верности гипотезы
(гипотезаотклоняется).

Как видно множество разбивается на три части: подмножествопринятия гипотезы
, подмножествопринятия гипотезыи область неопределённости, где нельзя отдать предпочтение той или иной гипотезе (в этом случае измерения должны быть продолжены). Из правил проверки гипотез (4.24) и (4.25) в данном случае следует, что объём выборки
не фиксирован и зависит от конкретного значения выборки
, то есть объём выборки естьслучайная величина .

В качестве критерия разумно выбрать минимальную среднюю стоимость эксперимента . Если “цена” одного эксперимента не меняется с увеличением
, то этот критерий переходит в критерий минимума среднего числа испытаний, необходимых для принятия решенияили.

А.Вальд доказал, что среди всех правил принятия решений (последовательных и непоследовательных), для которых условные вероятности ошибок не превосходят
ипоследовательное правило принятия решения, состоящее в сравнении отношения правдоподобия
с двумя порогамии, приводит к наименьшему значению среднего числа испытаний при верности
или. При независимости выборок имеем

В случае последовательного критерия отношения правдоподобия процедура проверки строится следующим образом:

Выбираются пороги и, как функции значений
и, и проверяется неравенство (4.23) на каждом шаге испытаний
.

Если
, то в качестве пороговиможно принять величины

,
. (4.26)

Вместо сравнения
с порогамииобычно логарифмируют обе части неравенства (4.23) и при независимых испытаниях проводят проверку по правилу


. (4.27)

На рисунке 4.1 показан пример изменения значений суммы случайного числа случайных величин до принятия решения при увеличении числа испытаний. Нужно иметь в виду, что в процедуре проверки гипотез по Вальду размер выборки - величина случайная. Из теории вероятностей известно, если независимы, распределены одинаково и их дисперсия ограничена, то

.

Откуда получим математическое ожидание числа испытаний

В применении к последовательному анализу получим математическое ожидание числа испытаний при различных состояниях источника:

,
(4.28)

Математические ожидания
и
зависят от проверяемой гипотезы и границ принятия решений. Пренебрегая перескоком границ
и
значениями сумм в момент принятия решения об остановке процедуры проверки гипотез (4.27), запишем соответствующие математические ожидания сумм

, (4.29)

. (4.30)

Математические ожидания логарифма отношения правдоподобия

при состоянии источников
и
определяются как

,
,

где
- плотность распределения вероятности выборкиy при состоянии источника
, – область, на которой определена плотность распределения вероятности
.

В случае дискретного распределения выборочных значений имеем

,
,

где m – количество значений y , которое может принимать случайная величина при однократном измерении,
.

Преимуществом последовательного анализа перед всеми остальными процедурами проверки гипотез заключается в том, что последовательный анализ Вальда даёт приблизительно 48% выигрыша в числе испытаний при проведении серии процедур проверки гипотез.

Во всех правилах принятия решения, кроме минимаксного правила, используется отношение правдоподобия и решение принимается при нарушении неравенств
, гдеС – порог, зависящий от выбранного критерия. Но само отношение правдоподобия – случайная величина, имеющая плотность распределения вероятности
, зависящей от состояния источника. Запишем вероятности ошибок и вероятности правильного принятия решений, используя плотность распределения вероятности отношения правдоподобия

, (4.33)

, (4.35)

Приведённые равенства показывают, что вероятности ошибок
и, а также вероятности правильных решений
и
, можно вычислять как по многомерным областями, так и по одномерной области, определяемой плотностями вероятностей
и
, что облегчает вычисления. Сведём в одну таблицу рассмотренные критерии.

Таблица правил принятия решений

Априорные

сведения

Критерий

Примечание

,


Объём выборки

=

=

. Объём выборки фиксирован, вероятности ,  вычисляются по
и


Объём выборки

Минимаксный

=

=

Объём выборки фиксирован, вероятности ,  вычисляются по выбранным правилам

Объём выборки

Максимума апостериорной вероятности

=

, Объём выборки фиксирован, вероятности ,  вычисляются по
и

Объём выборки

Максимального

правдоподобия

1=

Объём выборки фиксирован, вероятности ,  вычисляются по
и


Объём выборки

Неймана-Пирсона

Объём выборки фиксирован,
выбирается из условия.

Последовательный анализ Вальда

Минимизирует среднее число испытаний

Краткая теория

Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под природой будем понимать совокупность неопределенных факторов, влияющих на эффективность принимаемых решений.

Управление любым объектом осуществляется путем принятия последовательности управленческих решений. Для принятия решения необходима информация (совокупность сведений о состоянии объекта управления и условиях его работы). В тех случаях когда отсутствует достаточно полная информация, возникает неопределенность в принятии решения. Причины этого могут быть различны: требующаяся для полного обоснования решения информация принципиально не может быть получена (неустранимая неопределенность); информация не может быть получена своевременно, к моменту принятия решения; затраты, связанные с получением информации, слишком высоки. По мере совершенствования средств сбора, передачи и обработки информации неопределенность управленческих решении будет уменьшаться. К этому нужно стремиться. Существование неустранимой неопределенности связано со случайным характером многих явлений. Например, в торговле, случайный характер изменения спроса делает невозможным его точное прогнозирование, a, следовательно, и формирование идеально точного заказа на поставку товара. Принятие решения в этом случае связано с риском. Приемка партии товара на основании выборочного контроля также связана с риском принятия решения в условиях неопределенности. Неопределенность может быть снята путем полного контроля всей партии, однако это может оказаться слишком дорогостоящим мероприятием. В сельском хозяйстве, например, с целью получения урожая человек предпринимает ряд действии (пашет землю, вносит удобрения, борется с сорняками и т. п.). Окончательный результат (урожай) зависит от действий не только человека, но и природы (дождь, засуха, вечер и т. п.). Из приведенных примеров видно, что полностью исключить неопределенность в управлении экономической системой нельзя, хотя, повторим, к этому нужно стремиться. В каждом конкретном случае следует принимать во внимание степень риска при принятии управленческих решений, по возможности максимально учитывать имеющуюся информацию с целью уменьшения неблагоприятных последствий, которые могут возникнуть из-за ошибочных решений.

Две стороны, участвующие в игре, будем называть игрок I и игрок II. Каждый из игроков располагает конечным набором действий (чистых стратегий), которые он может применять в процессе игры. Игра имеет повторяющийся, циклический характер. о каждом цикле игроки выбирают одну из своих стратегии, что однозначно определяет платеж . Интересы игроков противоположны. Игрок I старается вести игру так, чтобы платежи были как можно большими. Для игрока II желательны как можно меньшие значения платежей (с учетом знака). Причем в каждом цикле выигрыш одного из игроков в точности совпадает с проигрышем другого. Игры такого типа называются играми с нулевой суммой.

Решить игру - значит определить оптимальное поведение игроков. Решение игр является предметом теории игр. Оптимальное поведение игрока инвариантно относительно изменения всех элементов платежной матрицы на некоторую величину.

В общем случае определение оптимального поведения игроков связано с решением двойственной пары задач линейного программирования. В отдельных случаях могут быть использованы более простые методы. Часто платежную матрицу удается упростить путем удаления из нее строк и столбцов, соответствующих доминируемым стратегиям игроков, доминируемой называется стратегия, все платежи которой не лучше соответствующих платежей некоторой другой стратегии и хотя бы один из платежей хуже соответствующего платежа этой другой стратегии, называемой доминирующей.

В обычной стратегической игре принимают участие «разумные и антагонистические» противники (противоборствующие стороны). В таких играх каждая из сторон предпринимает именно те действия, которые наиболее выгодны ей и менее выгодны противнику. Однако очень часто неопределенность, сопровождающая некоторую операцию, не связана с сознательным противодействием противника, а зависит от некой, не известной игроку I объективной действительности (природы). Такого рода ситуации принято называть играми с природой. Игрок II - природа - в теории статистических игр не является разумным игроком, так как рассматривается как некая незаинтересованная инстанция, которая не выбирает для себя оптимальных стратегий. Возможные состояния природы (ее стратегии) реализуются случайным образом. В исследовании операций оперирующую сторону (игрока I) часто называют статистиком, а сами операции - играми статистика с природой или статистическими играми.

Рассмотрим игровую постановку задачи принятия решения в условиях неопределенности. Пусть оперирующей стороне необходимо выполнить операцию в недостаточно известной обстановке относительно состояний которой можно сделать предположений. Эти предположения будем рассматривать как стратегии природы. Оперирующая сторона в своем распоряжении имеет возможных стратегий - . Выигрыши игрока I при каждой паре стратегий и - предполагаются известными и заданы платежной матрицей .

Задача заключается в определении такой стратегии (чистой или смешанной), которая лри ее применении обеспечила бы оперирующей стороне наибольший выигрыш.

Выше уже говорилось, что хозяйственная деятельность человека может рассматриваться как игра с природой. Основной особенностью природы как игрока является ее не заинтересованность в выигрыше.

Анализ матрицы выигрышей игры с природой начинается с выявления и отбрасывания дублирующих и заведомо невыгодных стратегий лица, играющего с природой. Что касается стратегий природы, то ни одну из них отбросить нельзя, так как каждое из состояний природы может наступить случайным образом, независимо от действий игрока I. Ввиду того что природа не противодействует игроку I, может показаться, что игра с природой проще стратегической игры. На самом деле это не так. Противоположность интересов игроков в стратегической игре в некотором смысле как бы снимает неопределенность, чего нельзя сказать о статистической игре. Оперирующей стороне в игре с природой легче в том отношении, что она скорее.всего выиграет больше, чем в игре против сознательного противника. Однако ей труднее принять обоснованное решение, так как в игре с природой неопределенность ситуации сказывается в гораздо более сильной степени.

После упрощения платежной матрицы игры с природой целесообразно не только оценить выигрыш при той или иной игровой ситуации, но и определить разность между максимально возможным выигрышем при данном состоянии природы и выигрышем, который будет получен при применении стратегии в тех же условиях. Эта разность в теории игр называется риском.

Природа меняет состояние стихийно, совершенно не заботясь о результате игры. В антагонистической игре мы предполагали, что игроки пользуются оптимальными (в определенном выше смысле) смешанными стратегиями. Можно предположить, что природа применяет наверняка не оптимальную стратегию. Тогда какую? Если бы существовал ответ на этот вопрос, то принятие решения лицом, принимающим решения (ЛПР) сводилось бы к детерминированной задаче.

Если вероятности состояний природы известны, то пользуются критерием Байеса, в соответствии с которым оптимальной считается чистая стратегия , при которой максимизируется средний выигрыш:

Критерий Байеса предполагает, что нам хотя и неизвестны условиях выполнения операций (состояния природы) , но известны их вероятности .

С помощью такого приема задача о выборе решения в условиях неопределенности превращается в задачу о выборе решения в условиях определенности, только принятое решение является оптимальным не в каждом отдельном случае, а в среднем.

Если игроку представляются в равной мере правдоподобными все состояния природы, то иногда полагают и, учитывая, «принцип недостаточного основания» Лапласа, оптимальной считают чистую стратегию , обеспечивающую:

Если же смешанная стратегия природы неизвестна, то в зависимости от гипотезы о поведении природы можно предложить ряд подходов для обоснования выбора решения ЛПР. Свою оценку характера поведения природы будем характеризовать числом , которое можно связывать со степенью активного «противодействия» природы как игрока Значение соответствует наиболее пессимистичному отношению ЛПР в смысле «содействия» природы в достижении им наилучших хозяйственных результатов. Значение соответствует наибольшему оптимизму ЛПР. Как известно, в хозяйственной деятельности указанные крайности опасны. Скорее всего, целесообразно исходить из некоторого промежуточного значения . В этом случае используется критерий Гурвица, согласно которому наилучшим решением ЛПР является чистая стратегия , соответствующая условию:

Критерий Гурвица (критерий «оптимизма-пессимизма») позволяет руководствоваться при выборе рискового решения в условиях неопределенности некоторым средним результатом эффективности, находящимся в поле между значениями по критериям «максимакса» и «максимина» (поле между этими значениями связано посредством выпуклой линейной функции).

В случае крайнего пессимизма ЛПР указанный критерий называется критерием Вальда. Согласно этому критерию, наилучшей считается максиминная стратегия. Это критерий крайнего пессимизма. По этому критерию ЛПР выбирает ту стратегию, которая гарантирует в наихудших условиях максимальный выигрыш:

Такой выбор соответствует наиболее робкому поведению ЛПР, когда он предполагает наиболее, неблагоприятное поведение природы, боится больших потерь. Можно предположить, что он не получит больших выигрышей. Согласно критерию Сэвиджа, следует выбирать чистую стратегию соответствующую условию:

где риск .

Критерий Сэвиджа (критерий потерь от «минимакса») предполагает, что из всех возможных вариантов «матрицы решений» выбирается та альтернатива, которая минимизирует размеры максимальных потерь по каждому из возможных решений. При использовании этого критерия «матрица решения» преобразуется в «матрицу риска», в которой вместо значений эффективности проставляются размеры потерь при различных вариантах развития событий.

Недостатком критериев Вальда, Сэвиджа и Гурвица является субъективная оценка поведения природы. Хотя указанные критерии и дают некоторую логическую схему принятия решений, резонно все же задать вопрос: «А почему сразу не выбрать субъективное решение, вместо того чтобы иметь дело с разными критериями?» Несомненно, определение решения по различным критериям помогает ЛПР оценить принимаемое решение с различных позиций и избежать грубых ошибок в хозяйственной деятельности.

Пример решения задачи

Условие задачи

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

  1. требуется профилактический ремонт;
  2. требуется замена отдельных деталей и узлов;
  3. требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

Требуется найти оптимальное решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

a 4 6 9 b 5 3 7 c 20 15 6 q 0.4 0.45 0.15

Решение задачи

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по методам оптимальных решений с контрольными или экзаменами.

Игра парная, статистическая. В игре участвуют 2 игрока: руководство предприятия и природа.

Под природой в данном случае понимаем совокупность внешних факторов, которые определяют состояние оборудования.

Стратегия руководства:

Отремонтировать оборудование своими силами

Вызвать бригаду специалистов

Заменить оборудование новым

Стратегия природы - 3 возможных состояния оборудования.

Требуется профилактический ремонт;

Следует заменить отдельные детали и узлы;

Требуется капитальный ремонт.

Расчет платежной матрицы и матрицы рисков

Поскольку элементы матрицы - затраты, то будем считать их выигрышными но со знаком минус. Платежная матрица:

-4 -6 -9 -9 -5 -3 -7 -7 -20 -15 -6 -20 0.4 0.45 0.15

Составляем матрицу рисков:

-4-(-20)=16 -6-(-15)=9 -9-(-9)=0 16 -5-(-20)=15 -3-(-15)=12 -7-(-9)=2 15 -20-(-20)=0 -15-(-15)=0 -6-(-9)=3 3

Критерий Байеса

Определяем средние выигрыши:

По критерию Байеса оптимальной является стратегия - вызвать бригаду специалистов

Критерий Лапласа

Определим средние выигрыши:

По критерию Лапласа оптимальной является стратегия - вызвать бригаду специалистов

Критерий Вальда

По критерию Вальда оптимальной является стратегия - вызвать бригаду специалистов

Критерий Сэвиджа

По критерию Сэвиджа оптимальной является стратегия - заменить оборудование новым

Критерий Гурвица

По критерию Гурвица оптимальной является стратегия - вызвать бригаду специалистов

Ответ

По всем критериям, за исключением критерия Сэвиджа, оптимальной является стратегия «Вызвать бригаду специалистов». По критерию Сэвиджа, который минимизирует риски, оптимальной является стратегия «Заменить оборудование новым».


Содержит изложенные в краткой и доступной форме теоретические сведения о матричной игре без седловой точки и способе сведения такой задачи к задаче линейного программирования, для отыскания ее решения в смешанных стратегиях. Приведен пример решения задачи.

Многоканальная СМО с неограниченной очередью
Приведены необходимые теоретические сведения и образец решения задачи по теме "Многоканальная система массового обслуживания с неограниченной очередью", подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с ожиданием обслуживания - среднее число каналов, занятых обслуживанием заявки, длина очереди, вероятность образования очереди, вероятность свободного состояния системы, среднее время ожидания в очереди.

Критический путь, критическое время и другие параметры сетевого графика работ
На примере решения задачи рассмотрены вопросы построения сетевого графика работ, нахождение критического пути и критического времени. Также показано вычисление параметров и резервов событий и работ - ранних и поздних сроков, общих (полных) и частных резервов.