Нк рф

Одноканальная смо с ожиданием. Средние число занятых каналов

Системы МО являются частью более широкого класса динамических систем, которые иногда называют системами потоков. Системой потоков называется система, в которой некоторые предметы перемещаются по одному или нескольким каналам с ограниченной пропускной способностью с целью перемещения из одной точки в другую. При анализе систем потоков их разбивают на два основных класса:

    регулярные системы, т. е. системы, в которых потоки ведут себя предсказуемым образом (известны величина потока и время его появления в канале). В случае, когда канал один, расчет системы тривиален. Очевидно, что между интенсивностью потока λ и скоростью обслуживания с есть соотношение λ < c ;

    нерегулярные системы, т. е. системы, в которых потоки ведут себя непредсказуемым образом.

Более интересным является случай регулярного потока, который распределяется по сети каналов. Очевидно, что условие λ < c сохраняется для каждого канала. При этом возникает сложная комбинаторная задача.

Имеется семь дорог:

  1. A→B→D→E→F

  2. A→C→B→ E→F

    A→C→B→D→E→F

    A→C→B→ D→F

Необходимо перевезти груз из А в F . Пропускная способность каждого канала известна. Какова пропускная способность сети и каким путем должен следовать поток? Решить эту задачу можно с помощью теоремы о максимальном потоке, которую мы рассматривали ранее (рис.6).

Ко второму классу относятся случайные вероятные потоки, в которых время поступления требования не определено, число требований непредсказуемо. Решением таких задач и занимается теория массового обслуживания.

В общем случае система массового обслуживания может быть представлена на рисунке 7.

Рис. 7.

Предметом теории массового обслуживания является установление зависимости между характером потока заявок, числом каналов, производительностью, правильностью работы и эффективностью.

В качестве характеристик эффективности могут применяться следующие величины и функции:

    среднее количество заявок, которые может обслужить СМО в единицу времени;

    среднее количество заявок, получающих отказ и покидающих СМО;

    вероятность того, что поступившая заявка немедленно будет обслужена;

    среднее время ожидания в очереди;

    среднее количество заявок в очереди;

    средний доход СМО в единицу времени и другие экономические показатели СМО .

Анализ СМО упрощается, если в системе протекает марковский процесс, тогда систему можно описать обыкновенными дифференциальными уравнениями, а предельные вероятности – линейными алгебраическими уравнениями.

Марковский процесс требует, чтобы все потоки были пуассоновскими (без последействий), но аппарат марковских процессов используется и тогда, когда процесс отличен от марковского. В этом случае характеристики СМО могут быть оценены приблизительно: чем сложнее СМО, тем точнее приближение.

Классификация систем массового обслуживания

СМО могут быть двух видов:

    СМО с отказами;

    СМО с ожиданием (т. е. с очередью).

Обслуживание в системах с очередью может иметь различный характер:

    обслуживание может быть упорядоченным;

    обслуживание в случайном порядке;

    обслуживание с приоритетом, при этом приоритет может быть с прерыванием и без прерывания.

Системы с очередью делятся на:

    системы с неограниченным ожиданием , при этом поступившая в СМО задача становится в очередь и ждет обслуживания. Рано или поздно она будет обслужена;

    системы с ограниченным ожиданием , при этом на заявку в очереди накладываются ограничения, например ограниченное время пребывания в очереди, длина очереди, общее время пребывания в СМО. В зависимости от типа СМО для оценки эффективности могут быть применены разные показатели.

Для СМО с отказами используются следующие показатели эффективности:

    абсолютная пропускная способность А – среднее число заявок, которое может быть обслужено в единицу времени;

    относительная пропускная способность Q – относительное среднее число заявок. При этом относительную пропускную способность можно найти по формуле

Где λ – это интенсивность поступления заявок в СМО.

Для СМО с ожиданием абсолютная пропускная способность А и относительная пропускная способность Q теряют смысл, но важными становятся другие характеристики:

    единица времени ожидания в очереди;

    среднее число заявок в очереди;

    среднее время пребывания в системе.

Для СМО с ограниченной очередью интересны обе группы характеристик.

Более сложные задачи теории массового обслуживания

В этом параграфе мы кратко рассмотрим некоторые вопросы, относящиеся к немарковским СМО. До сих пор все формулы нами выводились или, по крайней мере, могли быть выведены читателем, вооруженным схемой гибели и размножения, формулой Литтла и умением дифференцировать. То, что будет рассказано в данном параграфе, читателю придется принять на веру.

До сих пор мы занимались только простейшими СМО, для которых все потоки событий, переводящий их из состояния в состояние, были простейшими. А как быть, если они не простейшие? Насколько реально это допущение? Насколько значительны ошибки, к которым оно приводит, когда оно нарушается? На все эти вопросы мы попытаемся ответить здесь.

Как это ни грустно, но надо признаться, что в области немарковской теории массового обслуживания похвастать нам особенно нечем. Для немарковских СМО существуют только отдельные, считанные результаты, позволяющие выразить в явном, аналитическом виде характеристики СМО через заданные условия задачи - число каналов, характер потока заявок, вид распределения времени обслуживания. Приведем некоторые из этих результатов.

1. n -канальная СМО с отказами, с простейшим потоком заявок и произвольным распределением времени обслуживания. В предыдущем параграфе мы вывели формулы Эрланга (20.4), (20.5) для финальных вероятностей состояний СМО с отказами. Сравнительно недавно (в 1959 г.) Б. А. Севастьянов доказал, что эти формулы справедливы не только при показательном, но и при произвольном распределении времени обслуживания.

^ 2. Одноканальная СМО с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания. Если на одноканальную СМО с неограниченной очередью поступает простейший поток заявок с интенсивностью λ, а время обслуживания имеет произвольное распределение с математическим ожиданием t об = 1/μ. и коэффициентом вариации v μ , то среднее число заявок в очереди равно

а среднее число заявок в системе

(21.2)

Где, как и ранее, ρ = λ/μ., a v μ - отношение среднего квадратического отклонения времени обслуживания к его математическому ожиданию. Формулы (21.1), (21.2) носят название формул Полячека - Хинчина.

Деля L оч, и L сист на λ, получим, согласно формуле Литтла, среднее время пребывания заявки в очереди и среднее время пребывания в системе:

(21.3)

(21.4)

Заметим, что в частном случае, когда время обслуживания - показательное, v μ = 1 и формулы (21.1), (21.2) превращаются в уже знакомые нам формулы (20.16), (20.20) для простейшей одноканальной СМО. Возьмем другой частный случай - когда время обслуживания вообще не случайно и v μ = 0. Тогда среднее число заявок в очереди уменьшается вдвое по сравнению с простейшим случаем. Это и естественно: если обслуживание заявки протекает более организованно, «регулярно», то СМО работает лучше, чем при плохо организованном, беспорядочном обслуживании.

^ 3. Одноканальная СМО с произвольным потоком заявок и произвольным распределением времени обслуживания. Рассматривается одноканальная СМО с неограниченной очередью, на которую поступает произвольный рекуррентный поток заявок с интенсивностью λ и коэффициентом вариации v λ интервалов между заявками, заключенным между нулем и единицей: 0 < v λ < 1. Время обслуживания Т об также имеет произвольное распределение со средним значением t об = 1/μ и коэффициентом вариации v μ , тоже заключенным между нулем и единицей. Для этого случая точных аналитических формул получить не удается;

можно только приближенно оценить среднюю длину очереди, ограничить ее сверху и снизу.

Доказано, что в этом случае

Если входящий поток - простейший, то обе оценки - верхняя и нижняя - совпадают, и получается формула Полячека - Хинчина (21.1). Для грубо приближенной оценки средней длины очереди М. А. Файнбергом (см. ) получена очень простая формула:

(21.6)

Среднее число заявок в системе получается из L оч простым прибавлением ρ - среднего числа обслуживаемых заявок:

L сист = L оч + ρ. (21.7)

Что касается средних времен пребывания заявки в очереди и в системе, то они вычисляются через L оч и L сист по формуле Литтла делением на λ.

Таким образом, характеристики одноканальных СМО с неограниченной очередью могут быть (если не точно, то приближенно) найдены и в случаях, когда потоки заявок и обслуживании не являются простейшими.

Возникает естественный вопрос: а как же обстоит дело с многоканальными немарковскими СМО? Со всей откровенностью ответим: плохо. Точных аналитических методов для таких систем не существует. Единственное, что мы всегда можем найти, это среднее число занятых каналов k = ρ. Что касается L оч, L сист, W оч, W сист, то для них таких общих формул написать не удается.

Правда, если каналов действительно много (4-5 или больше), то непоказательное время обслуживания не страшно: был бы входной поток простейшим. Действительно, общий поток «освобождений» каналов складывается из потоков освобождений отдельных каналов, а в результате такого наложения («суперпозиции») получается, как мы знаем, поток, близкий к простейшему. Так что в этом случае замена непоказательного распределения времени обслуживания показательным приводит к сравнительно малым ошибкам. К счастью, входной поток заявок вомногих задачах практики близок к простейшему.

Хуже обстоит дело, когда входной поток заведомо не простейший. Ну, в этом случае приходится пускаться на хитрости. Например, подобрать две одноканальные СМО, из которых одна по своей эффективности заведомо «лучше» данной многоканальной, а другая - заведомо «хуже» (очередь больше, время ожидания больше). А для одноканальной СМО мы худо-бедно уже умеем находить характеристики в любом случае.

Как же подобрать такие одноканальные СМО - «лучшую» и «худшую»? Это можно сделать по-разному. Оказывается, заведомо худший вариант можно получить, если расчленить данную n -канальную СМО на п одноканальных, а общий поступающий на них простейший поток распределять между этими одноканальными СМО в порядке очереди: первую заявку - в первую СМО, вторую - во вторую и т. д. Мы знаем, что при этом на каждую СМО будет поступать поток Эрланга n -го порядка, с коэффициентом вариации, равным 1/ . Что касается коэффициента вариации времени обслуживания, то он остается прежним. Для такой одноканальной СМО мы уже умеем вычислять время пребывания заявки в системе W сист; оно будет заведомо больше, чем для исходной n -канальной СМО. Зная это время, можно дать «пессимистическую» оценку и для среднего числа заявок в очереди, пользуясь формулой Литтла и умножая среднее время на интенсивность λ общего потока заявок. «Оптимистическую» оценку можно получить, заменяя n -канальную СМО одной одноканальной, но с интенсивностью потока обслуживании в n раз большей, чем у данной, равной . Естественно, при этом параметр ρ тоже должен быть, изменен, уменьшен в n раз. Для такой СМО время пребывания заявки в системе W сист уменьшается за счет того, что обслуживание продолжается в n раз меньше времени. Пользуясь измененным значением , коэффициентом вариации входящего потока v λ и времени обслуживания v μ , мы можем приближенно вычислить среднее число заявок в системе . Вычитая из него первоначальное (не измененное) значение ρ, мы получим среднее число заявок в очереди . Обе характеристики будут меньше, чем для исходной n -канальной СМО (будут представлять собой «оптимистические» оценки). От них, деля на λ, можно перейти к «оптимистическим» оценкам для времени пребывания в СМО и в очереди.

Имеется n -канальная СМО с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность , а поток обслуживаний – интенсивность . Необходимо найти предельные вероятности состояний СМО и показатели ее эффективности.

Система может находиться в одном из состояний s 0 , s 1 , s 2 ,…,s k ,…,s n , нумеруемых по числу заявок, находящихся в СМО: s 0 – в системе нет заявок (все каналы свободны); s 1 – занят один канал, остальные свободны; s 2 – заняты два канала, остальные свободны;…; s k – занято k каналов, остальные свободны;…; s n – заняты все n каналов (очереди нет); s n +1 – заняты все n каналов, в очереди одни заявка;…; s n + r – заняты все n каналов, r заявок в очереди.

Граф состояний приведен на рис. 7

… …

В отличие от одноканальной СМО интенсивность потока обслуживаний не остается постоянной, а по мере увеличения числа заявок в СМО от 0 до n увеличивается от величины до , т.к. соответственно увеличивается число каналов обслуживания. При числе заявок больше, чем n , интенсивность потока обслуживаний сохраняется равной . Если в системе n каналов обслуживания с интенсивностью , интенсивность входящего потока равна , то, чтобы очередь не стала бесконечно большой, необходимо выполнение условия стационарности

Это условие означает, что суммарная скорость обслуживания всех каналов системы должна превосходить скорость поступления требований , иначе система не справится с обслуживанием потока.

Данное условие характерно только для систем с очередью в отличие от систем с отказом, т.к. все поступившие требования должны получить обслуживание.

Используя формулы (11)для процесса гибели и размножения, можно получить формулы для предельных вероятностей состояний n -канальной СМО с неограниченной очередью

(31)

,…, ,…, (32)

,…,

Вероятность того, что в системе заняты обслуживанием все n каналы, определяется по формуле

(33)

Для n -канальной СМО с неограниченной очередью, используя прежние приемы, можно найти:

Среднее число занятых каналов

Среднее число заявок в очереди

,

Среднее число заявок в системе

,

Среднее время обслуживания заявки

Среднее время ожидания обслуживания

Полученные выше формулы значительно упрощаются в случае одно – или двухканальной системы

При n=1

Т.к.

;

При n=2

Т.к.

,

Пример 7. К двум продавцам поступает на обслуживание поток покупателей с интенсивностью 220 человек в час. Каждый из продавцов затрачивает на обслуживание покупателя в среднем 30 секунд. Определите среднюю длину очереди и показатели занятости продавцов.



Решение. , ,

– интенсивность загрузки

– среднее число занятых обслуживанием каналов

– средняя длина очереди

– доля времени простоя продавцов

– доля времени занятости одного из двух продавцов

– доля времени занятости двух продавцов

Пример 8. В универсаме к узлу расчета поступает поток покупателей с интенсивностью . Средняя продолжительность обслуживания контролером-кассиром одного покупателя . Определить минимальное количество контролеров-кассиров n мин , при котором очередь не будет расти до бесконечности и соответствующие характеристики обслуживания при n=n мин .

Решение. По условию , . Очередь не будет возрастать до бесконечности при условии , т.е. при . Таким образом, минимальное количество контролеров-кассиров n min =3 .Р отк =0 , относительная пропускная способность Q=1 , а абсолютная пропускная способность равна интенсивности входящего потока заявок, т.е. .

Для нашей задачи абсолютная пропускная способность узла расчета A=1,35 1/мин или 81 1/ч , т.е. 81 покупатель в час.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех контролеров-кассиров.

Система с ограниченной длиной очереди . Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты каналов, остальные нет;

Заняты все каналов, свободных нет;

есть очередь:

Заняты все n каналов; одна заявка стоит в очереди;

Заняты все n каналов, r заявок в очереди;

Заняты все n каналов, m заявок в очереди.

ГСП приведен на рис. 5.9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Многоканальная экспоненциальная СМО отличается от одноканальной следующим. Число каналов в ней более одного. Приходящая заявка становится в очередь, если все каналы заняты. В противном случае заявка занимает свободный канал. (5.56)

Напишем выражения для предельных вероятностей состояний, используя обозначение : (см.5.45)

Вероятность отказа . Поступившая заявка получает отказ, если заняты все n каналов и все m мест в очереди:

(5.57)

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

(5.58)

Среднее число занятых каналов . Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем заявок в единицу времени, а СМО в целом обслуживает в среднем А заявок в единицу времени. Разделив одно на другое, получим:



Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

(5.59)

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (5.50), (5.51)-(5.53)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди . Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все п каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже m заявок, то она вообще не будет ждать (но и не будет обслужена).

Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

(5.60)

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (5.59) только множителем , т. е.

Среднее время пребывания заявки в системе , так же, как и для одноканальной СМО , отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

Системы с неограниченной длиной очереди .

Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул (5.56) предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при > 1. Допустив, что < 1 и устремив в формулах (5.56) величину m к бесконечности, получим выражения для предельных вероятностей состояний:

(5.61)

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (5.59):

а среднее время ожидания - из (5.60):

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Усложнение структур и режимов реальных систем затрудняет применение классических методов теории массового обслуживания ввиду возрастающей размерности решаемых задач, что особенно характерно для систем с сетевой структурой. Одним из возможных путей преодоления размерности является использование моделей в форме сетей массового обслуживания (СеМО).

СеМО представляет собой совокупность конечного числа обслуживающих узлов, в которой циркулируют заявки, переходящие в соответствии с маршрутной матрицей из одного узла в другой. Узел всегда является разомкнутой СМО . При этом отдельные СМО СМО − структуру системы, а требования, циркулирующие по СеМО , − составляющие материальных потоков (сообщения (пакеты) в коммуникационной сети, задания в мультипроцессорных системах, контейнеры грузопотоков и т.п.).

В свою очередь, СеМО используют для определения важнейших системных характеристик информационных систем: производительности; времени доставки пакетов; вероятности потери сообщений и блокировки в узлах ; области допустимых значений нагрузки, при которых обеспечивается требуемое качество обслуживания и др.

В теории СеМО фундаментальным является понятие состояния сети. Важнейшая характеристика сетей МО − вероятности их состояний. Для определения вероятностей состояний СеМО исследуют протекающий в сети случайный процесс. В качестве моделей протекающих в СеМО процессов также наиболее часто используют марковские и полумарковские.

3.3. Система массового обслуживания как модель

1.5. Сети массового обслуживания

Марковским процессом с непрерывным временем описывают функционирование экспоненциальных СеМО.

Сеть называется экспоненциальной, если входящие потоки требований в каждую СМО пуассоновские , а времена каждого этапа обслуживания, реализуемого на любой СМО сети, имеют экспоненциальное распределение. Это позволяет считать, что этапы обслуживания независимы между собой и не зависят ни от параметров входящего потока, ни от состояния сети, ни от маршрутов следования требований.

Теория экспоненциальных СеМО наиболее разработана, и ее широко применяют как для исследования сетей ПД так и для исследования мультипроцессорных вычислительных систем (ВС). Разработаны практические формулы расчета вероятностно-временных характеристик (ВВХ) таких сетей и систем.

Попытки глубокого анализа немарковских моделей сетевых систем наталкиваются на значительные трудности, которые обусловлены в частности отсутствием независимости длительностей пребывания требований в различных узлах моделей сетевых систем с нестандартными дисциплинами. Так, например, при достаточно реалистическом предположении о том, что длина требования остается постоянной в процессе его передачи через узлы сети, необходимо прослеживать путь каждого требования, что делает невозможным аналитический расчет характеристики для сети с числом узлов М>2.

Анализ работ, посвященных исследованию или расчету немарковских моделей, показывает, что решения, как правило, получены алгоритмически путем сложных численных расчетов с использованием преобразований Лапласа-Стилтьеса, реализуются программно, отличаются большой трудоемкостью, либо значительными погрешностями в оценке показателей производительности информационных систем (ИС) в области средней и большой нагрузки. Поэтому для моделирования СеМО, выходящих из класса мультипликативных, используют приближенные методы.

Сравнительный анализ приближенных методов моделирования СеМО и примеры, приведенные в показывают, что пользоваться приближенными методами расчета СеМО необходимо с большой осторожностью, что при расчете конкретных СеМО, в процессе решения различных прикладных задач представляется необходимым проведение исследований в целях оценки точности и чувствительности применяемого метода, а также проведение эксперимента по имитационному моделированию исходной СеМО для достаточно большого множества значений варьируемых параметров.

Аналитические методы расчета характеристик ИС базируются, как правило, на анализе экспоненциальных СеMO. При использовании этого математического аппарата удается получить аналитические модели для решения широкого круга задач исследования систем. CеМО − это, прежде всего, совокупность взаимосвязанных систем массового обслуживания. Поэтому необходимо вспомнить основные особенности этих систем.

Сеть массового обслуживания представляет собой совокупность конечного числа N обслуживающих узлов, в которой циркулируют заявки, переходящие в соответствии с маршрутной матрицей из одного узла в другой. Узел всегда является разомкнутой СМО (причем СМО может быть любого класса). При этом отдельные СМО отображают функционально самостоятельные части реальной системы, связи между СМО - структуру системы, а требования, циркулирующие по СеМО, - составляющие материальных потоков (сообщения (пакеты) в коммуникационной сети, задания в мультипроцессорных системах, контейнеры грузопотоков и т.п.).

Для наглядного представления СеМО используется граф, вершины которого (узлы) соответствуют отдельным СМО , а дуги отображают связи между узлами.

Переход заявок между узлами происходит мгновенно в соответствии с переходными вероятностями , p ij - вероятность того, что заявка после обслуживания в узле i перейдет в узел j . Естественно, если узлы непосредственно не связаны между собой, то p ij = 0. Если из i- го узла переход только в один какой-либо узел j , то p ij = 1.

СеМО классифицируют по нескольким признакам (рис. 4).

Сеть называется линейной , если интенсивности потоков заявок в узлах связаны между собой линейной зависимостью

l j = a ij l i ,

где a ij - коэффициент пропорциональности, или относительно источника

l j = a j l 0 ,.

Коэффициент a j называют коэффициентом передачи, он характеризует долю заявок, поступающих в j- й узел от источника заявок, либо - среднее число прохождений заявкой через данный узел за время нахождения заявки в сети.

Если интенсивности потоков заявок в узлах сети связаны нелинейной зависимостью (например, ), то сеть называется нелинейной ..

Сеть всегда линейна, если в ней заявки не теряются и не размножаются.

Разомкнутая сеть – это такая отрытая сеть, в которую заявки поступают из внешней среды и уходят после обслуживания из сети во внешнюю среду. Другими словами, особенностью разомкнутой СеМО (РСеМО) является наличие одного или нескольких независимых внешних источников, которые генерируют заявки, поступающие в сеть, независимо от того, сколько заявок уже находится в сети. В любой момент времени в РСеМО может находиться произвольное число заявок (от 0 до ¥).

Рис. 4. Классификация сетей массового обслуживания

В замкнутой СеМО (ЗСеМО) циркулирует фиксированное число заявок, а внешний независимый источник отсутствует. Исходя из физических соображений, в ЗСеМ О выбирается внешняя дуга, на которой отмечается псевдонулевая точка, относительно которой могут измеряться временные характеристики.

Комбинированная сеть – это сеть, в которой постоянно циркулирует определенное число заявок и есть заявки, поступающие от внешних независимых источников.

В однородной сети циркулируют заявки одного класса. И, наоборот, в неоднородной сети могут присутствовать заявки нескольких классов. Заявки относятся к разным классам, если они различаются хотя бы одним из следующих атрибутов:

Законом распределения длительности обслуживания в узлах;

Приоритетами;

Маршрутами (путями движения заявок в сети).

В экспоненциальной сети длительности обслуживания во всех узлах распределены по экспоненциальному закону, и потоки, поступающие в разомкнутую сеть, простейшие (пуассоновские). Во всех остальных случаях сеть является неэкспоненциальной.

Если хотя бы в одном узле осуществляется приоритетное обслуживание, то это – приоритетная сеть. Приоритет – это признак, определяющий очередность обслуживания. Если обслуживание заявок в узлах осуществляется в порядке поступления, то такая сеть бесприоритетная.

Таким образом, экспоненциальной будем называть СеМО , отвечающую требованиям:

Входные потоки СеМО пуассоновские;

Во всех N СМО время обслуживания заявок имеет экспоненциальную функцию распределения вероятностей, и заявки обслуживаются в порядке прихода;

Переход заявки с выхода i -й СМО на вход j -й является независимым случайным событием, имеющим вероятность p ij ; p i0 - вероятность ухода заявки из CeМО.

Если заявки приходят в сеть и уходят из нее, то сеть называется разомкнутой. Если заявки не приходят в сеть и из нее не уходят, сеть называется замкнутой. Число заявок в замкнутой сети постоянное.

4. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

4.1. Классификация систем массового обслуживания и их показатели эффективности

Системы, в которых в случайные моменты времени возникают заявки на обслуживание и имеются устройства для обслуживания этих заявок, называются системами массового обслуживания (СМО).

СМО могут быть классифицированы по признаку организации обслуживания следующим образом:

Системы с отказами не имеют очередей.

Системы с ожиданием имеют очереди.

Заявка, поступившая в момент, когда все каналы обслуживания заняты:

Покидает систему с отказами;

Становится в очередь на обслуживание в системах с ожиданием при неограниченной очереди или на свободное место при ограниченной очереди;

Покидает систему с ожиданием при ограниченной очереди, если в этой очереди нет свободного места.

В качестве меры эффективности экономической СМО рассматривают сумму потерь времени:

На ожидание в очереди;

На простои каналов обслуживания.

Для всех видов СМО используются следующие показатели эффективности :

- относительная пропускная способность - это средняя доля поступающих заявок, обслуживаемых системой;

- абсолютная пропускная способность - это среднее число заявок, обслуживаемых системой в единицу времени;

- вероятность отказа - это вероятность того, что заявка покинет систему без обслуживания;

- среднее число занятых каналов - для многоканальных СМО.

Показатели эффективности СМО рассчитываются по формулам из специальных справочников (таблиц). Исходными данными для таких расчетов являются результаты моделирования СМО.

4.2. Моделирование системы массового обслуживания:

основ­ные параметры, граф состояний

При всем многообразии СМО они имеют общие черты , которые позволяют унифицировать их моделирование для нахождения наиболее эффективных вариантов организации таких систем .

Для моделирования СМО необходимо иметь следующие исходные данные:

Основные параметры;

Граф состояний.

Результатами моделирования СМО являются вероятности ее состояний, через которые выражаются все показатели ее эффективности.

Основные параметры для моделирования СМО включают:

Характеристики входящего потока заявок на обслуживание;

Характеристики механизма обслуживания.

Рассмотрим характеристики потока заявок .

Поток заявок - последовательность заявок, поступающих на обслуживание.

Интенсивность потока заявок - среднее число заявок, поступающих в СМО в единицу времени.

Потоки заявок бывают простейшими и отличными от простейших.

Для простейших потоков заявок используются модели СМО.

Простейшим , или пуассоновским называется поток, являющийся стационарным , одинарным и в нем отсутствуют последействия .

Стационарность означает неизменность интенсивности поступления заявок с течением времени.

Одинарным поток заявок является в том случае, когда за малый промежуток времени вероятность поступления более чем одной заявки близка к нулю.

Отсутствие последействия заключается в том, что число заявок, поступивших в СМО за один интервал времени, не влияет на количество заявок, полученных за другой интервал времени.

Для отличных от простейших потоков заявок используются имитационные модели.

Рассмотрим характеристики механизма обслуживания .

Механизм обслуживания характеризуется:

- числом каналов обслуживания ;

Производительностью канала, или интенсивностью обслуживания - средним числом заявок, обслуживаемых одним каналом в единицу времени;

Дисциплиной очереди (например, объемом очереди , порядком отбора из очереди в механизм обслуживания и т. п.).

Граф состояний описывает функционирование системы обслуживания как переходы из одного состояния в другое под действием потока заявок и их обслуживания.

Для построения графа состояний СМО необходимо:

Составить перечень всех возможных состояний СМО;

Представить перечисленные состояния графически и отобразить возможные переходы между ними стрелками;

Взвесить отображенные стрелки, т. е. приписать им числовые значения интенсивностей переходов, определяемые интенсивностью потока заявок и интенсивностью их обслуживания.

4.3. Вычисление вероятностей состояний

системы массового обслуживания


Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:

где - вероятность того, что система находится в состоянии

- интенсивность перехода, или среднее число переходов системы в единицу времени из состояния в состояние .

Используя эту систему уравнений, а также уравнение

вероятность любого -ого состояния можно вычислить по следующему общему правилу :

вероятность нулевого состояния рассчитывается как

а затем берется дробь, в числителе которой стоит произведение всех интенсивностей потоков по стрелкам, ведущим слева направо от состояния до состояния а в знаменателе - произведение всех интенсивностей по стрелкам, идущим справа налево от состояния до состояния , и эта дробь умножается на рассчитанную вероятность

Выводы по четвертому разделу

Системы массового обслуживания имеют один или несколько каналов обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания со схемой «гибели и рождения» осуществляется по общему правилу.

Вопросы для самопроверки

Какие системы называются системами массового обслуживания?

Как классифицируются системы массового обслуживания по признаку их организации?

Какие системы массового обслуживания называются системами с отказами, а какие – с ожиданием?

Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты?

Что рассматривают в качестве меры эффективности экономической системы массового обслуживания?

Какие используются показатели эффективности системы массового обслуживания?

Что служит исходными данными для расчетов показателей эффективности систем массового обслуживания?

Какие исходные данные необходимы для моделирования систем массового обслуживания?

Через какие результаты моделирования системы массового обслуживания выражают все показатели ее эффективности?

Что включают основные параметры для моделирования систем массового обслуживания?

Чем характеризуются потоки заявок на обслуживание?

Чем характеризуются механизмы обслуживания?

Что описывает граф состояний системы массового обслуживания

Что необходимо для построения графа состояний системы массового обслуживания?

Что представляет собой граф состояний системы массового обслуживания со схемой «гибели и рождения»?

Чему равно число состояний в графе состояний системы массового обслуживания?

Какой вид имеет система уравнений для определения вероятностей состояний системы массового обслуживания?

По какому общему правилу вычисляется вероятность любого состояния системы массового обслуживания?

Примеры решения задач

1. Построить граф состояний системы массового обслуживания и привести основные зависимости ее показателей эффективности.

а) n-канальная СМО с отказами (задача Эрланга)

Основные параметры:

Каналов ,

Интенсивность потока ,

Интенсивность обслуживания .

Возможные состояния системы:

Все каналов заняты ( заявок в системе).

Граф состояний:

Относительная пропускная способность ,

Вероятность отказа ,

Среднее число занятых каналов .

б) n-канальная СМО с m-ограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналы заняты, две заявки в очереди;

Все каналы заняты, заявок в очереди.

Граф состояний:

в) Одноканальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Канал занят, ноль заявок в очереди;

Канал занят, одна заявка в очереди;

...................................................................................

Канал занят, заявка в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

,

Среднее время пребывания заявки в системе ,

,

,

Абсолютная пропускная способность ,

Относительная пропускная способность .

г) n-канальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналов заняты ( заявок в системе), ноль заявок в очереди;

Все каналы заняты, одна заявка в очереди;

....................................................................................

Все каналы заняты, заявок в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

Среднее число занятых каналов ,

Среднее число заявок в системе ,

Среднее число заявок в очереди ,

Среднее время пребывания заявки в очереди .

2. Вычислительный центр имеет три ЭВМ. В центр поступает на решение в среднем четыре задачи в час. Среднее время решения одной задачи - полчаса. Вычислительный центр принимает и ставит в очередь на решение не более трех задач. Необходимо оценить эффективность центра.

РЕШЕНИЕ. Из условия ясно, что имеем многоканальную СМО с ограниченной очередью:

Число каналов ;

Интенсивность потока заявок (задача / час);

Время обслуживания одной заявки (час / задача), интенсивность обслуживания (задача / час);

Длина очереди .

Перечень возможных состояний:

Заявок нет, все каналы свободны;

Один канал занят, два свободны;

Два канала заняты, один свободен;

Три канала заняты;

Три канала заняты, одна заявка в очереди;

Три канала заняты, две заявки в очереди;

Три канала заняты, три заявки в очереди.

Граф состояний:

Рассчитаем вероятность состояния :

Показатели эффективности:

Вероятность отказа (все три ЭВМ заняты и три заявки стоят в очереди)

Относительная пропускная способность

Абсолютная пропускная способность

Среднее число занятых ЭВМ

3. (Задача с использованием СМО с отказами.) В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы (* - заданное значение ).

РЕШЕНИЕ. По условию задачи , тогда .

1) Вероятность простоя каналов обслуживания:

,

3) Вероятность обслуживания:

4) Среднее число занятых обслуживанием каналов:

.

5) Доля каналов, занятых обслуживанием:

6) Абсолютная пропускная способность:

При . Произведя аналогичные расчеты для , получим

Так как , то произведя расчеты для , получим

ОТВЕТ. Вероятность того, что при деталь пройдет ОТК необслуженной, составляет 21%, и контролеры будут заняты обслуживанием на 53%.

Чтобы обеспечить вероятность обслуживания более 95%, необходимо не менее пяти контролеров.

4. (Задача с использованием СМО с неограниченным ожиданием.) Сберкасса имеет трех контролеров-кассиров () для обслуживания вкладчиков . Поток вкладчиков поступает в сберкассу с интенсивностью чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика мин.

Определить характеристики сберкассы как объекта СМО.

РЕШЕНИЕ. Интенсивность потока обслуживания , интенсивность нагрузки .

1) Вероятность простоя контролеров-кассиров в течение рабочего дня (см. предыдущую задачу №3):

.

2) Вероятность застать всех контролеров-кассиров занятыми:

.

3) Вероятность очереди:

.

4) Среднее число заявок в очереди:

.

5) Среднее время ожидания заявки в очереди:

мин.

6) Среднее время пребывания заявки в СМО:

7) Среднее число свободных каналов:

.

8) Коэффициент занятости каналов обслуживания:

.

9) Среднее число посетителей в сберкассе:

ОТВЕТ. Вероятность простоя контролеров-кассиров равна 21% рабочего времени , вероятность посетителю оказаться в очереди составляет 11,8%, среднее число посетителей в очереди 0,236 чел., среднее время ожидания посетителями обслуживания 0,472 мин.

5. (Задача с применением СМО с ожиданием и с ограниченной длиной очереди.) Магазин получает ранние овощи из пригородных теплиц. Автомобили с грузом прибывают в разное время с интенсивностью машин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обрабатывать и хранить товар, привезенный двумя автомашинами (). В магазине работают три фасовщика (), каждый из которых в среднем может обрабатывать товар с одной машины в течение ч. Продолжительность рабочего дня при сменной работе составляет 12 ч.

Определить, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была .

РЕШЕНИЕ. Определим интенсивность загрузки фасовщиков:

Авт./дн.

1) Найдем вероятность простоя фасовщиков при отсутствии машин (заявок):

причем 0!=1,0.

2) Вероятность отказа в обслуживании:

.

3) Вероятность обслуживания:

Так как , произведем аналогичные вычисления для , получим), при этом вероятность полной обработки товара будет .

Задания для самостоятельной работы

Для каждой из следующих ситуаций определить:

a) к какому классу относится объект СМО;

b) число каналов ;

c) длину очереди ;

d)интенсивность потока заявок ;

e) интенсивность обслуживания одним каналом;

f) количество всех состояний объекта СМО.

В ответах указать значения по каждому пункту, используя следующие сокращения и размерности:

a) ОО – одноканальная с отказами; МО – многоканальная с отказами; ОЖО – одноканальная с ожиданием с ограниченной очередью; ОЖН - одноканальная с ожиданием с неограниченной очередью; МЖО – многоканальная с ожиданием с ограниченной очередью; МЖН - многоканальная с ожиданием с неограниченной очередью;

b) =… (единиц);

c) =… (единиц);

d) =ххх/ххх (единиц /мин);

e) =ххх/ххх (единиц /мин);

f) (единиц).

1. Дежурный по администрации города имеет пять телефонов. Телефонные звонки поступают с интенсивностью 90 заявок в час, средняя продолжительность разговора составляет 2 мин.

2. На стоянке автомобилей возле магазина имеются 3 места, каждое из которых отводится под один автомобиль. Автомобили прибывают на стоянку с интенсивностью 20 автомобилей в час. Продолжительность пребывания автомобилей на стоянке составляет в среднем 15 мин. Стоянка на проезжей части не разрешается.

3. АТС предприятия обеспечивает не более 5 переговоров одновременно. Средняя продолжительность разговоров составляет 1 мин. На станцию поступает в среднем 10 вызовов в сек.

4. В грузовой речной порт поступает в среднем 6 сухогрузов в сутки. В порту имеются 3 крана, каждый из которых обслуживает 1 сухогруз в среднем за 8 ч. Краны работают круглосуточно. Ожидающие обслуживания сухогрузы стоят на рейде.

5. В службе «Скорой помощи» поселка круглосуточно дежурят 3 диспетчера, обслуживающие 3 телефонных аппарата. Если заявка на вызов врача к больному поступает, когда диспетчеры заняты, то абонент получает отказ. Поток заявок составляет 4 вызова в минуту. Оформление заявки длится в среднем 1,5 мин.

6. Салон-парикмахерская имеет 4 мастера. Входящий поток посетителей имеет интенсивность 5 человек в час. Среднее время обслуживания одного клиента составляет 40 мин. Длина очереди на обслуживание считается неограниченной.

7. На автозаправочной станции установлены 2 колонки для выдачи бензина. Около станции находится площадка на 2 автомашины для ожидания заправки. На станцию прибывает в среднем одна машина в 3 мин. Среднее время обслуживания одной машины составляет 2 мин.

8. На вокзале в мастерской бытового обслуживания работают три мастера. Если клиент заходит в мастерскую, когда все мастера заняты, то он уходит из мастерской, не ожидая обслуживания. Среднее число клиентов, обращающихся в мастерскую за 1 ч, равно 20. Среднее время, которое затрачивает мастер на обслуживание одного клиента, равно 6 мин.

9. АТС поселка обеспечивает не более 5 переговоров одновременно. Время переговоров в среднем составляет около 3 мин. Вызовы на станцию поступают в среднем через 2 мин.

10. На автозаправочной станции (АЗС) имеются 3 колонки. Площадка при станции, на которой машины ожидают заправку, может вместить не более одной машины, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится, а проезжает на соседнюю станцию. В среднем машины прибывают на станцию каждые 2 мин. Процесс заправки одной машины продолжается в среднем 2,5 мин.

11. В небольшом магазине покупателей обслуживают два продавца. Среднее время обслуживания одного покупателя – 4 мин. Интенсивность потока покупателей – 3 человека в минуту. Вместимость магазина такова, что одновременно в нем в очереди могут находиться не более 5 человек. Покупатель, пришедший в переполненный магазин, когда в очереди уже стоят 5 человек, не ждет снаружи и уходит.

12. Железнодорожную станцию дачного поселка обслуживает касса с двумя окнами. В выходные дни, когда население активно пользуется железной дорогой, интенсивность потока пассажиров составляет 0,9 чел./мин. Кассир затрачивает на обслуживание пассажира в среднем 2 мин.

Для каждой из указанных в вариантах СМО интенсивность потока заявок равна и интенсивность обслуживания одним каналом . Требуется:

Составить перечень возможных состояний;

Построить граф состояний по схеме "гибели и размножения".

В ответе указать для каждой задачи:

Количество состояний системы;

Интенсивность перехода из последнего состояния в предпоследнее.

Вариант № 1

1. одноканальная СМО с очередью длиной в 1 заявку

2. 2-канальная СМО с отказами (задача Эрланга)

3. 31-канальная СМО с 1-ограниченной очередью

5. 31-канальная СМО с неограниченной очередью

Вариант № 2

1. одноканальная СМО с очередью длиной в 2 заявки

2. 3-канальная СМО с отказами (задача Эрланга)

3. 30-канальная СМО с 2-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 30-канальная СМО с неограниченной очередью

Вариант № 3

1. одноканальная СМО с очередью длиной в 3 заявки

2. 4-канальная СМО с отказами (задача Эрланга)

3. 29-канальная СМО с 3-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 29-канальная СМО с неограниченной очередью

Вариант № 4

1. одноканальная СМО с очередью длиной в 4 заявки

2. 5-канальная СМО с отказами (задача Эрланга)

3. 28-канальная СМО с 4-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 28-канальная СМО с неограниченной очередью

Вариант № 5

1. одноканальная СМО с очередью длиной в 5 заявок

2. 6-канальная СМО с отказами (задача Эрланга)

3. 27-канальная СМО с 5-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 27-канальная СМО с неограниченной очередью

Вариант № 6

1. одноканальная СМО с очередью длиной в 6 заявок

2. 7-канальная СМО с отказами (задача Эрланга)

3. 26-канальная СМО с 6-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 26-канальная СМО с неограниченной очередью

Вариант № 7

1. одноканальная СМО с очередью длиной в 7 заявок

2. 8-канальная СМО с отказами (задача Эрланга)

3. 25-канальная СМО с 7-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 25-канальная СМО с неограниченной очередью

Вариант № 8

1. одноканальная СМО с очередью длиной в 8 заявок

2. 9-канальная СМО с отказами (задача Эрланга)

3. 24-канальная СМО с 8-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 24-канальная СМО с неограниченной очередью

Вариант № 9

1. одноканальная СМО с очередью длиной в 9 заявок

2. 10-канальная СМО с отказами (задача Эрланга)

3. 23-канальная СМО с 9-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 23-канальная СМО с неограниченной очередью

Вариант № 10

1. одноканальная СМО с очередью длиной в 10 заявок

2. 11-канальная СМО с отказами (задача Эрланга)

3. 22-канальная СМО с 10-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 22-канальная СМО с неограниченной очередью