Открытие бизнеса

Белый и серый чугуны. Большая энциклопедия нефти и газа

Чугун начали применять много десятилетий назад. Этот материал обладает особыми эксплуатационными характеристиками, которые отличаются от свойственных стали. Производство чугуна, несмотря на появление большого количества различных сплавов, налажено во многих странах. Для того чтобы определить свойства чугуна, следует рассмотреть особенности его химического состава, от чего зависят те или иные физические качества.

Химический состав чугуна является важным фактором, который во многом определяет механические свойства получаемых отливок. Кроме этого, на многие свойства оказывает влияние механизмы первичной и вторичной кристаллизации.

Рассматривая химический состав чугуна следует отметить, что в него, кроме железа и углерода, обязательно входят следующие элементы:

  1. Кремний (концентрация не более 4,3%). Данный элемент оказывает благоприятное воздействие на чугун, делая его более мягким и улучшая его литейные свойства. Однако слишком высокая концентрация может сделать материал более восприимчивым к пластичной деформации.
  2. Марганец (не более 2%). За счет добавления этого элемента в состав существенно увеличивается прочность материала. Однако слишком большая концентрация может стать причиной хрупкости структуры.
  3. Сера относится к вредным примесям, который могут существенно ухудшать эксплуатационные качества материала. Как правило, концентрация серы в составе чугуна не превышает показателя 0,07%. Сера становится причиной появления трещин при нагреве состава.
  4. Фосфор содержится в составе в концентрации менее 1,2%. Повышение концентрации фосфора в составе становится причиной появления трещин при охлаждении состава. Кроме этого, данный элемент становится причиной ухудшения других механических качеств.

Как и во многих других составах, наиболее важным из химических элементов чугуна является углерод. От его концентрации и вида зависит разновидность материала. Структура чугуна может существенно различаться в зависимости от применяемой технологии производства.

Физический свойства

Чугун получил широкое распространение благодаря привлекательным физическим качествам:

  1. Стоимость материала существенно ниже стоимости других сплавов. Именно поэтому его применяют для создания самых различных изделий.
  2. Рассматривая плотность чугуна, отметим, что данный показатель существенно ниже, чем у стали, за счет чего материал становится намного легче.
  3. Температура плавления чугуна может несколько различаться в зависимости от его структуры, в большинстве случаев составляет 1 200 градусов Цельсия. За счет включения в состав различных добавок температура плавления чугуна может существенно повышаться или уменьшаться.
  4. При выборе материала многие уделяют внимание тому, что цвет чугуна может несколько отличаться в зависимости от структуры и химического состава.

Температура кипения чугуна также во многом зависит от химического состава. Для того, чтобы рассмотреть физические свойства материала, следует уделить внимание каждой его разновидности. Иная структура и химический состав становятся причиной придания иных физико-механических качеств.

Технология производства

Выплавка чугуна проводится на протяжении нескольких десятилетий, что связано с его уникальными эксплуатационными качествами. Большое количество разновидностей сплавов определяет применение особых правил маркировки. Маркировка чугунов проводится следующим образом:

  1. Литейные обозначаются буквой Л.
  2. Серый получил широкое распространение, для его обозначения применяется сочетание букв «СЧ».
  3. Ковкий обозначают КЧ.
  4. Предельный или белый обозначают буквой П.
  5. Антифрикционный или серый обозначают АЧС.
  6. Легированные чугуны могут обладать самым различным химическим составом и обозначаются буквой «Ч».

Технология производства чугуна предусматривает проведение нескольких этапов, которые позволяют получить требуемую структуру. Рассматривая процесс получения чугуна, отметим следующие моменты:

  1. Производство проводится в специальных доменных печах.
  2. Легированный и жаростойкий чугун могут получаться при использовании в качестве сырья железной руды.
  3. Технология представлена в восстановлении оксидов железа руды. В результате перестроения кристаллической решетки и изменения структуры на выходе получается материал, который называют чугуном.
  4. Рассматривая способы производства, отметим, что особенности технологии также заключаются в применяемых материалах – коксах. Под коксом подразумевают природный газ или термоантрацит, выступающие в качестве топлива.
  5. Изготовление чугуна предусматривает отпуск железа в твердой форме при применении специальной печи. На данном этапе получается жидкий чугун.

Оборудование для производства чугуна может существенно отличаться. Кроме этого, применяемая технология производства во многом определяет то, какой будет получен материал. Примером можно назвать производство ВЧШГ, которое связано с приданием структуре необычную форму.

Разновидности чугуна

Существует довольно большое количество разновидностей рассматриваемого материала. Классификация чугунов во многом зависит от структуры и химического состава. Выделяют следующие виды чугуна:

  1. . Эта разновидность материала характеризуется низкой пластичностью и высокой вязкостью, а также хорошей обрабатываемостью резанием. В составе углерод содержится в виде графита. Область применения – машиностроение; производство деталей, работающих на износ. Как показывает практика, концентрация фосфора может варьироваться в достаточно большом диапазоне: от 0,3 до 1,2%. За счет особого химического состава материал обладает высокой текучестью и часто применяется в художественном литье. Антифрикционный чугун обходится в относительно невысокую стоимость, что также определяет его широкое распространение.
  2. . За счет того, что в этом составе углерод представлен в качестве цементита, структура характеризуется чрезвычайной хрупкостью и повышенной твердостью, а также низкими литейными свойствами и плохой обрабатываемостью резанием. Стоит учитывать, что белый чугун применяется для переделки в сталь или изготовлении ковкого. Очень часто его называют предельным.
  3. Половинчатый характеризуется повышенной устойчивостью к износу, что связано с распределением углерода на цементитную и свободную основу. Часто эта разновидность материала применяется в машиностроении и станкостроении.
  4. Легированный. Для того чтобы придать особые свойства чугуну также проводится его легирование. Легированный чугун обладает повышенной износостойкостью, коррозионной стойкостью за счет включения в состав никеля и хрома, а также меди. Подобные варианты исполнения чугуна получают свое название в зависимости от того, как легирующий элемент использовался при их изготовлении.
  5. Высокопрочный чугун производится путем введения в состав жидкого серого чугуна различных элементов, к примеру, магния и кальция. В результате легирования меняется форма графита – он напоминает шар и при этом не меняет кристаллическую решетку. Стоит учитывать, что по своим свойствам этот металл напоминает углеродистую сталь, применяется, в основном, при изготовлении различных износостойких деталей.
  6. Ковкий. Получают его при переплавке белого чугуна, который следует нагреть до высокой температуры и выдерживать в подобном состоянии. В некоторых случаях для придания составу особых качеств проводится добавление легирующих элементов. Основными свойствами можно назвать высокую вязкость и повышенную степень пластичности. Получил широкое распространение в машиностроительной промышленности.
  7. Специальный. Представляет собой сплав, в который входит большое количество марганца и кремния. Зачастую применяется для удаления кислорода из стали при его производстве или переплавке, за счет чего понижается температура плавления.

Каждая разновидность чугуна обладает своей особой структурой и химическим составом, которые и определяют область применения.

Применение

Из-за особых физико-механических качеств применение чугуна стало возможно в самых различных сферах:

  1. Для производства различных деталей в машиностроительной отрасли. На протяжении многих лет именно этот сплав применяется при изготовлении самых различных деталей для двигателя внутреннего сгорания. При этом автопроизводители проводят изменение основных свойств материала путем его легирования, что необходимо для достижения уникальных качеств. Кроме этого, большое распространение получили тормозные колодки из данного сплава.
  2. Изделия из чугуна могут выдерживать воздействие низкой температуры. Поэтому материал применяется при производстве техники и инструментов, которые эксплуатируются в жестких климатических условиях.
  3. Ценится чугун в металлургической области. Это связано с невысокой стоимостью, которая во многом зависит от концентрации углерода и особенностей получаемой структуры. Высокие литейные качества также делают материал более привлекательным. Получаемые изделия характеризуются высокой прочностью и износостойкостью.
  4. На протяжении нескольких последних десятилетий рассматриваемый сплав широко применяется при изготовлении сантехнического оборудования. Это связано с высокими антикоррозионными способностями, а также возможностью получения изделий самой различной формы. Примером можно назвать чугунные ванны и радиаторы, различные трубы, батареи и мойки. Несмотря на появление материалов, которые могли бы заменить чугун, подобные изделия пользуются большой популярностью. Это связано с тем, что они сохраняют первозданный вид на протяжении длительного периода эксплуатации.
  5. Применяется сплав и для изготовления различных декоративных элементов, что связано с высокими литейными качествами. Примером можно назвать решетку для перил, различные статуэтки и многое другое.



Кроме этого, область применения зависит от нижеприведенных свойств рассматриваемого материала:

  1. Некоторые марки обладают высокой прочностью, которая характерна для стали. Именно поэтому материал применяется даже после появления современных сплавов.
  2. Чугунные изделия могут на протяжении длительного периода сохранять тепло. При этом тепловая энергия может равномерно распространяться по материалу. Эти качества стали использоваться при изготовлении отопительных радиаторов или других подобных изделий.
  3. Принято считать, что чугун – экологически чистый материал. Именно поэтому его часто применяют при изготовлении различной посуды, к примеру, казана.
  4. Высокая стойкость к воздействию кислотно-щелочной среды.
  5. Высокая гигиеничность, так как все загрязняющие вещества могут легко удаляться с поверхности.
  6. Рассматриваемый материал характеризуется достаточно длительным сроком службы при условии соблюдения рекомендаций по эксплуатации.
  7. Входящие в состав химические вещества не могут нанести вреда здоровью.

В заключение отметим, что давно открытая технология производства рассматриваемого материала на протяжении многих лет оставалась практически неизменной. Это связано с тем, что при относительно невысоких затратах можно было получить большой объем расплавленного сплава. На сегодняшний день часто проводится производство материала из лома, что позволяет еще в большой степени снизить себестоимость получаемого продукта.

Сплав железа с углеродом (>2,14 % С) называют чугуном. Присутствие эвтектики в структуре чугуна (см. рис. 87) обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий (см. рис. 101 и 102).

СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ

Серый чугун (технический) представляет собой, по существу, сплав Fe-Si-С, содержащий в качестве постоянных примесей Mn, Р и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок (см. рис. 88). Наиболее широкое применение получили доэвтектические чугуны, содержащие 2,4- 3,8 % С. Чем выше содержание в чугуне углерода, тем больше образуется графита и тем ниже его механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жид- котекучести) должно быть не менее 2,4 % С.

Разрез тройной диаграммы состояния Fe-Si-С для постоянного содержания кремния (2 %) показан на рис. 99. В отличие от стабильной диаграммы Fe-С (см. рис. 87) в системе Fe-Si-С перитектическое (Ж+

Рис. 99.

Ж - жидкая фаза; А аустенит; Г * графит

F- 6-феррит-? А), эвтектическое (Ж-*А + Г) и эвтектоид- ное (А -? Ф + Г) превращения протекают не при постоянной температуре, а в некотором интервале температур.

Величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от содержания кремния. Чем больше содержание кремния, тем шире эвтектический интервал температур.

Охлаждение чугуна в реальных условиях вносит существенные отклонения от условий равновесия. Структура чугуна в отливках зависит в первую очередь от химического состава (содержания углерода и кремния) и скорости кристаллизации.

Кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой - скорость охлаждения, можно получить различную структуру металлической основы чугуна. Структурная диаграмма для чугунов, показывающая, какой должна быть структура в отливке с толщиной стенки 50 мм, в зависимости от содер-


Рис. 100.

а - влияние С в Si; ни структуру чугуна: б - влияние скорости охлаждения (толщины отливкн) и суммы С + SI на структуру чугуна; I - белые чугуны; //- V - серые чу- гуны


Рис. 101.

а - белый чугун; б - перлитный серый чугун: в - ферритно-перлитный серый чугун; г - ферритный серый чугун

жания в чугуне кремния и углерода показана на рис. 100, а. При данном содержании углерода, чем больше в чугуне кремния, тем полнее протекает графитизация. Чем больше в чугуне углерода, тем меньше требуется кремния для получения заданной структуры.

В зависимости от содержания углерода, связанного в цементит, различают:

  • 1. Белый чугун (рис. 100, а, /), в котором весь углерод находится в виде цементита Fe 3 C. Структура такого чугуна - перлит, ледебурит и цементит (рис. 100, а, I и 101, а).
  • 2. Половинчатый ч>тун (рис. 100, а , //), большая часть углерода (>0,8 %) находится в виде Fe 3 C. Структура такого чугуна - перлит, ледебурит и пластинчатый графит С
  • 3. Перлитный серый чугун (рис. 100, а, III) структура чугуна (рис. 101, б) - перлит и пластинчатый графит. В этом чугуне 0,7-0,8 °b С находится в виде Fe 3 C, входящего в состав перлита.
  • 4. Ферритно-перлитный (рис. 100, а, /V) серый чугун. Структура такого чугуна (рис. 101, в ) - перлит, феррит и пластинчатый графит (составы см. на рис. 100, а, III). В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 % С.
  • 5. Ферритный серый чугун (рис. 100, а, V ). Структура (рис. 101, г) - феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита.

При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация (рис. 100, б).

Следовательно, содержание кремния надо увеличивать в отливке небольшого сечения, охлаждающейся ускоренно, или в чугуне с меньшим содержанием углерода. В толстых сечениях отливок, охлаждающихся медленнее, графитизация протекает полнее и содержание кремния может быть меньше. Количество марганца в чугуне не превышает 1,25-1,4 %. Марганец препятствует гра- фитизации, т. е. затрудняет выделение графита и повышает способность чугуна к отбеливанию - появлению, особенно в поверхностных слоях, структуры белого или половинчатого чугуна. Сера является вредной примесью, ухудшающей механические и литейные свойства чугуна. Поэтому ее содержание ограничивают до 0,1-0,2 %. В сером чугуне сера образует сульфиды (FeS, MnS) или их твердые растворы (Fe, Мп) S .

Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры. В этом случае механические свойства будут зависеть от количества, величины и характера распределений включений графита.

Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна. Чугун о большим количеством прямолинейных крупных графитных выделений, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими

и завихренными графитными выделениями обладает более высокими свойствами.

Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо ог свойств металлической основы практически равно нулю (-"0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3-5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие.

Пластинки графита менее значительно, чем при растяжении, снижают прочность и при изгибе, так как часть изделия испытывает сжимающие напряжения. Предел прочности при изгибе имеет промежуточное значение между пределом прочности на растяжение и на сжатие. Твердость чугуна 143-255 НВ.

Графит, нарушая сплошность металлической основы, делает чугун малочувствительным к всевозможным концентраторам напряжений (дефектам поверхности, надрезам, выточкам и т. д.). Вследствие этого серый чугун имеет примерно одинаковую конструктивную прочность в отливках простой формы или с ровной поверхностью и сложной формы с надрезами или с плохо обработанной поверхностью. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного «смазывающего» действия и повышения прочности пленки смазочного материала. Очень важно, что графит улучшает обрабатываемость резанием, делая стружку ломкой.

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 100, б). Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает ферритный серый чугун.

Серый чугун маркируется буквами С - серый и Ч - чугун (ГОСТ 1412-85). После букв следуют цифры, указывающие минимальное значение временного сопротивления 10" 1 МПа (кгс/мм 2).

Серые чугуны по свойствам и применению можно разделить на следующие группы.

Ферритные и ферритно-перлитные чугуны (СЧ 10, СЧ 15, СЧ 18) имеют временное сопротивление 100-180 МПа (10- 18 кгс/мм 2), предел прочности при изгибе 280-320 МПа (28- 32 МПа). Их примерный состав: 3,5-3,7 % С; 2,0-2,6 % Si; 0,5--0,8 % Ми;

СЧ 15). Эти чугуны применяют для малоответственных деталей, испытывающих небольшие нагрузки в работе с толщиной стенки отливки 10-30 мм. Так, чугун СЧ 10 используют для строительных колонн, фундаментных плит, а чугуны СЧ 15 и СЧ 18 -для литых малонагруженных деталей сельскохозяйственных машин, станков, автомобилей и тракторов, арматуры и т. д.

Перлитные чугуны (СЧ 21, СЧ 24, СЧ 25, СЧ 30, СЧ 35) применяют для ответственных отливок (станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений, компрессоров, арматуры, дизельных цилиндров, блоков двигателей, деталей металлургического оборудования и т. д.) с толщиной стенки до 60-100 мм . Структура этих чугунов - мелкопластинчатый перлит (сорбит) с мелкими завихренными графитными включениями. К перлитным относятся так называемые сталистые и модифицированные чугуны.

При выплавке сталистых чугунов СЧ 24, СЧ 25 в шихту добавляют 20-30 % стального лома; чугуны имеют пониженное содержание углерода, что обеспечивает получение более дисперсной перлитной основы с меньшим количеством графитных включений. Примерный состав: 3,2-3,4 % С; 1,4-2,2 % Si; 0,7-

1,0 % Мп; % Р;

Модифицированные чугуны (СЧ 30, СЧ 35) получают при добавлении в жидкий чугун перед разливкой специальных добавок- модификаторов (графит, 75 %-ный ферросилиций, силико- кальций в количестве 0,3-0,8 % и т. д.). Модифицирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины.

Модифицированию подвергают низкоуглеродистый чугун, содержащий сравнительно небольшое количество кремния и повышенное количество марганца и имеющий без введения модификатора структуру половинчатого чугуна, т. е. ледебурит, перлит и графит. Примерный химический состав чугуна: 2,2-3,2 % С; 1,0-2,9 % Si; 0,2-1,1 % Мп;

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают при 500-600 °С. В зависимости от формы и размеров отливки выдержка при температуре отжига составляет 2-10 ч. Охлаждение после отжига медленное, вместе о печью. После такой обработки механические свойства изменяются мало, а внутренние напряжения снижаются на 80-90 %. Иногда для снятия напряжений в чугунных отливках применяют естественное старение чугуна - выдержку их на складе в течение 6-10 месяцев; такая выдержка снижает напряжения на 40-50 % .

Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Эти чугуны должны обеспечивать низкое трение (малый коэффициент трения), т. е. антифрикционность. Антифрикционные свойства чугуна определяются соотношением перлита и феррита в основе, а также количеством и формой графита. Антифрикционные чугуны изготовляют следующих марок :

АЧС-1 (3,2-3,6 % С; 1,3-2,0 % Si; 0,6-1,2 % Мп; 0,15- 0,4% Р; % Сг; 1,5-2,0 % Си); АЧС-2 (3,2-3,8% С; 1,4-2,2% Si; 0,3-1% Мп; 0,15-0,4 % Р; % Ti; 0,2- 0,5 % Си) и АЧС-3 (3,2-3,8 % С; 1,7-2,6 % Si; 0,3-0,7 % Мп; 0,15-0,4% Р; 0,2-0,5 % Си;

Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из перлитных серых чугу- нов АЧС-1 и АЧС-2; для работы в паре с термически необработанными валами применяют перлитно-ферритный чугун АЧС-3.

Перлитный чугун, содержащий повышенное количество фос^ фора (0,3-0,5 %), используют для изготовления поршневых колец. Высокая износостойкость колец обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфидной эвтектики при наличии изолированных выделений пластинчатого графита.

  • Графит кристаллизуется в виде довольно сложных форм (см. рис. 88, б, о),но сечение их плоскостью микрошлифа дает вид пластинок.
  • 2 В белых чугунах возможно образование эвтектики (Fe + FeS) и растворение серы в FeaC.
  • Чем больше толщина стенок отливки, тем ниже механические свойства. 149
  • А - антифрикционный, Ч - чугун, С - серый.

Отличается от стали по составу более высоким содержанием углерода, по технологическим свойствам - лучшими литейными качествами, малой способностью к пластической деформации (в обычных условиях не поддается ковке). Чугун дешевле стали.

Чугуны классифицируют по следующим показателям:

  • состоянию углерода:

- белый чугун - весь углерод находится в связанном состоянии в виде карбида;

- серый чугун - углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого или волокнистого (завихренного) графита;

- высокопрочный чугун - углерод в значительной степени или полностью находится в свободном состоянии в форме шаровидного графита;

- ковкий чугун - получают в результате отжига отливок из белого чугуна. Весь углерод или значительная часть его находится в свободном состоянии в форме хлопьевидного графита (углерода отжига);

  • структуре:

- ферритный ;

- ферритно-перлитный ;

- перлитный ;

  • химическому составу:

- нелегированный ;

- легированный - специального назначения.

Таким образом, чугун (кроме белого) отличается от стали наличием в структуре графитовых включений (рис. 1), а между собой чугуны различаются по форме этих включений.

Рис. 1. Классификация чугуна по структуре металлической основы и форме графитовых включений: а - феррит; б - феррит и перлит; в - перлит; / - пластинчатая; 2- завихренная; 3 - хлопьевидная; 4- шаровидная.

Механические свойства чугунов зависят от структуры и в основном от формы, количества, размеров и характера распределений графитовых включений. Графитовые включения определяют технологические и эксплуатационные свойства чугунов. Наличие графитовых включений облегчает обработку деталей из чугуна резанием вследствие ломкой стружки. Графит повышает износостойкость и придает хорошие антифрикционные свойства чугуну путем собственного «смазывающего» действия. Чугун обладает низкой чувствительностью к различным поверхностным дефектам, надрезам, проточкам и т. п., так как графитовые включения сами являются концентраторами напряжений, и добавление к ним еще нескольких не оказывает существенного влияния на общую прочность материала. В отличие от металлической основы графит плохо передает упругие колебания, поэтому чугун обладает высокой демпфирующей способностью, что позволяет гасить вибрацию и резонансные колебания.

Твердость чугунов мало зависит от формы графитовых включений и определяется структурой металлической основы. У ферритных чугунов твердость составляет ~150 НВ, у феррито-перлитных ~200 НВ; перлитных ~250 НВ.

Примеси в чугуне

Обычный промышленный чугун содержит те же примеси , что и углеродистая сталь, т. е. марганец, кремний, серу и фосфор, но в большем количестве. Эти примеси существенно влияют на условия графитизации и, следовательно, на структуру и свойства чугуна.

Кремнии особенно сильно влияет на структуру чугуна, усиливая графитизацию. Содержание кремния в чугунах колеблется в широких пределах: от 0,3-0,5 до 3-5 %. Изменяя содержание кремния, можно получить чугуны, совершенно различные по свойствам и структуре - от малокремнистого белого до высококремнистого ферритного (серого с пластинчатым или высокопрочного с шаровидным графитом).

Марганец в отличие от кремния препятствует графитизации, или, как говорят, способствует отбеливанию чугуна.

Сера также способствует отбеливанию чугуна, но одновременно ухудшает его литейные свойства (в частности, снижает жидкотекучесть). Поэтому содержание серы в чугуне лимитируется: верхний предел для мелкого литья - 0,08 %; для более крупного (когда можно допустить несколько худшую жидкотекучесть) - до 0,1-0,12% S.

Фосфор практически не влияет на процесс графитизации. Однако фосфор - полезная примесь в чугуне, так как он улучшает жидкотекучесть.

Белый чугун

Такое название чугун получил по виду излома, который имеет матово-белый цвет. Весь углерод в этом чугуне находится в связанном состоянии в виде цементита. Белые чугуны в зависимости от содержания углерода могут быть доэвтектическими (перлит + ледебурит), эвтектическими (ледебурит) и заэвтектиче-скими (первичный цементит + ледебурит). Эти чугуны отличаются большой твердостью (450-550 НВ) из-за присутствия в них большого количества цементита. Поэтому они очень хрупкие и для изготовления деталей машин не используются. Отливки из белого чугуна служат для последующего изготовления ковкого чугуна с помощью графитизирующего отжига. В дальнейшем он применяется для изготовления деталей повышенной усталостной прочности: коленчатых и распределительных валов, седел клапанов, зубчатых колес масляного насоса, суппортов дискового тормозного механизма и др.

Отбеленные чугуны-отливки имеют поверхностные слои (12-30 мм) со структурой белого чугуна, а сердцевину - со структурой серого чугуна. Высокая твердость поверхности такой отливки повышает ее стойкость к истиранию. Поэтому отбеленный чугун применяют для изготовления валков листовых прокатных станов, колес, тормозных колодок и многих других деталей, работающих в условиях повышенного изнашивания.

Серый чугун

Такое название чугун получил по виду излома, который имеет серый цвет. В структуре серого чугуна имеется графит. Структура чугуна состоит из металлической основы и графита (в форме пластин), и свойства его зависят от этих двух составляющих.

Графит по сравнению со статью имеет низкие механические свойства, поэтому в некотором приближении можно считать, что места, которые он занимает, - это пустоты и трещины. С увеличением числа пустот механические свойства чугуна резко ухудшаются. При растягивающих напряжениях легко образуются центры разрушения на концах графитных включений. Значительно лучше ведет себя чугун при сжатии и изгибах.

Серые чугуны являются сплавами сложного состава, содержащими железо, углерод, кремний, марганец и примеси, такие, как сера и фосфор. Последний частично растворяется в феррите (~0,3 %) и, кроме того, входит в тройную эвтектику (Fe-С-Р) с температурой плавления 950 °С. Это существенно улучшает литейные свойства чугуна.

Сера - вредная примесь, снижает механические и литейные свойства чугунов и повышает склонность к образованию в них трещин.

Кремний входит в состав серых чугунов (1-3 %) как основной химический элемент и увеличивает выделение графита при затвердевании и разложении выделившегося цементита.

Марганец (0,2-1,1 %) положительно влияет на механические свойства чугуна, но затрудняет процесс графитизации или способствует его отбеливанию. Таким образом, можно сказать, что степень графитизации напрямую зависит от количества углерода (2,2-3,7 %) и кремния (1-3 %) в чугуне.

В небольших количествах в серые чугуны могут попасть из руды хром, никель и медь, которые тоже влияют на условие графитизации. Количество графитных включений и структура основы влияют на свойства серого чугуна.

По структуре металлической основы серые чугуны делят на три группы:

1) серый перлитный со структурой перлит + графит (количество связанного углерода составляет ~0,8 %.);

2) серый ферритно-перлитный со структурой феррит + перлит + графит (количество связанного углерода меньше 0,8);

3) серый ферритный со структурой феррит + графит (весь углерод в виде графита).

Механические свойства серого чугуна зависят от свойств металлической основы и ее количества, формы и размеров графитных включений (пустот).

Маркировка серого чугуна

По ГОСТ 1412-85 в обозначение чугуна входит сочетание букв и цифр, например СЧ15. СЧ обозначает серый чугун, цифры показывают значение временного сопротивления при растяжении. Стандарт предусматривает следующие марки чугуна: СЧ10; СЧ15; СЧ18; СЧ20; СЧ21; СЧ24; СЧ25; СЧ30; СЧ35; СЧ40; СЧ45.

Значения показателей некоторых серых чугунов приведены в табл. 1.

Таблица 1. Механические показатели некоторых серых чугунов

Наличие графита способствует измельчению стружки при обработке резанием и оказывает смазывающее действие, что повышает износостойкость чугуна.

Ферритные серые чугуны марок СЧ10 и СЧ15 используют для слабо- и средненагруженных деталей: крышек, фланцев, маховиков, суппортов, тормозных барабанов, ведущих дисков сцепления и т. д.

Ферритно-перлитные серые чугуны марок СЧ20 и СЧ25 применяют для деталей, работающих при повышенных статических и динамических нагрузках: блоков цилиндров двигателя, поршней цилиндров, барабанов сцепления, станин станков и др.

Перлитный чугун применяют для отливки станин мощных станков и механизмов. Часто используют перлитные серые модифицированные чугуны. Такие чугуны получают при добавлении в жидкий чугун перед разливкой специальных добавок - ферросилиция (0,3-0,6 % от массы шихты) или силикокальция (0,3-0,5 % от массы шихты). К таким чугунам относят чугуны марок СЧ40 и СЧ45, которые обладают более высокими механическими свойствами из-за измельчения формы графитных включений. Эти чугуны применяют для изготовления корпусов насосов, компрессоров и гидроприводов.

Для деталей, работающих при повышенных температурах, применяют легированные серые чугуны, которые дополнительно содержат хром, никель, молибден и алюминий.

Ковкий чугун

Ковким чугун называется потому, что его можно подвергать обработке давлением, хотя чугуны не куют, а детали из чугуна получают лишь методом литья в связи с тем, что ковкий чугун имеет более высокую пластичность по сравнению с серым.

Ковкий чугун получают путем графитизируюшего отжига отливок из белого доэвтектического чугуна. В составе ковкого чугуна не должно быть большого количества марганца, так как он при отжиге препятствует процессу графитизации, а также большого количества углерода и кремния, что приводит к затруднению получения отливок из белого чугуна, потому что при кристаллизации графит начинает выделяться в виде пластинок. Поэтому химический состав белого чугуна, отжигаемого на ковкий чугун, имеет ограничения по содержанию: 2,5-3,0 % С; 0,7-1,5 % Si; 0,3-1,0% Mn; менее 0,12 % S; менее 0,18% Р.

Толщина сечения отливки не должна превышать 40-50 мм, так как при большей толщине в сердцевине образуется пластинчатый графит, что делает чугун непригодным для отжига.

Отжиг проводится в две стадии. На первой стадии отливки из белого чугуна медленно нагревают до температуры 930-1050 °С и выдерживают в течение 15 ч при этой температуре. При этом происходит распад цементита, входящего в высокотемпературный ледебурит, и из выделившегося углерода образуется хлопьевидный графит.

На второй стадии отливки охлаждают до температуры 700-760 °С, соответствующей эвтектоидному превращению, и выдерживают при этой температуре до 30 ч, либо очень медленно охлаждают. При этом происходит распад цементита, входящего в перлит. После окончания второй стадии структура чугуна состоит из феррита и хлопьевидного графита. Такой чугун называют ферритным ковким чугуном.

Если охлаждение было недостаточно медленным в районе температур, соответствующих эвтектоидному превращению, или недостаточной была выдержка на второй стадии графитизации, то распад цементита, входящего в перлит, произойдет не полностью. При этом структура чугуна будет состоять из феррита, перлита и хлопьевидного графита. Такой чугун называют феррито-перлитным ковким чугуном.

Если охлаждение в интервале температур было ускоренным, то распада цементита, входящего в перлит, не произойдет. При этом структура чугуна будет состоять из перлита и хлопьевидного графита. Такой чугун называется перлитным ковким чугуном.

Маркировка. Ковкий чугун согласно ГОСТ 1215-79 маркируется буквами «КЧ» и двумя числами: первое указывает временное сопротивление при растяжении; второе - относительное удлинение (в %).

Значения механических показателей некоторых ковких чугунов приведены в табл. 2.

Таблица 2. Механические показатели некоторых ковких чугунов

Высокопрочный чугун

Высокопрочным называют чугун с шаровидной формой графита, получаемой в процессе кристаллизации отливки. Такая форма графитовых включений имеет меньшую поверхность по сравнению с пластинчатой и хлопьевидной при одинаковом объеме, уменьшает концентрацию напряжений.

Шаровидную форму графита получают введением в жидкий чугун магния, или магния с никелем, или ферросилиция.

Под действием модификаторов графит в процессе кристаллизации принимает шаровидную форму. Чугуны с шаровидной формой графита имеют более высокие механические свойства по сравнению с другими чугунами. Высокопрочные чугуны близки по свойствам к литой углеродистой стали, но ооладают лучшими литейными свойствами, хорошо обрабатываются резанием, сохраняют высокую износостойкость. Для повышения пластичности и вязкости отливки из высокопрочного чугуна подвергают термической обработке: отжигу, нормализации, закачке и отпуску. Одновременно с повышением пластичности при термической обработке снижаются остаточные напряжения в отливках, что повышает их работоспособность.

Маркировка. Высокопрочный чугун согласно ГОСТ 7293-85 обозначается аналогично ковким чугунам: буквами «ВЧ» и числами: первое указывает величину временного сопротивления, второе - относительное удлинение (в %).

Стандарт предусматривает следующие марки чугунов: ВЧ35-22; ВЧ40-15; ВЧ45-10; ВЧ50-7; ВЧ60-3; ВЧ70-2; ВЧ80-2; ВЧ 100-2. Химический состав высокопрочного чугуна: 3,2-3,6 % С; 1,6-2,9 % Si; 0,3-0,7 % Mn; не более 0,02 % S; не более 0,1 % Р. Высокопрочные чугуны на ферритной основе (ВЧ35-22, ВЧ40-15, ВЧ45-10) имеют δ от 22 до 10%, 140-225 НВ; на перлитной основе (ВЧ50-7, ВЧ60-3, ВЧ70-2, ВЧ80-2, ВЧ100-2)- δ от 7 до 2%, 153-360 НВ.

Высокая прочность и пластичность высокопрочных чугунов позволяют использовать их для изготовления коленчатых валов автомобильных дизелей и других деталей, работающих в узлах трения при повышенных нагрузках.

Антифрикционные чугуны

Антифрикционные чугуны - специальные серые и высокопрочные чугуны с повышенными антифрикционными свойствами. Эти чугуны обладают низким коэффициентом трения, зависящим от соотношения феррита и перлита в основе, а также от количества и формы графита. В перлитных чугунах высокая износостойкость обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфорной эвтектики при наличии изолированных выделений пластинчатого графита.

Отливки из антифрикционного чугуна (ГОСТ 1585-85) применяют для изготовления деталей, работающих в подшипниковых узлах трения.

Маркировка. Существуют следующие марки антифрикционного чугуна: АЧС1; АЧС2; АЧСЗ; АЧС1; АЧВ2; АЧК1; АЧК2. Буквы «АЧС» обозначают антифрикционный серый чугун; «АЧВ» - антифрикционный высокопрочный чугун; «АЧК» - антифрикционный ковкий чугун.

Антифрикционные серые чугуны - перлитные чугуны АЧС-1 и АЧС-2 и перлитно-ферритный чугун АЧС-3 - обладают низким коэффициентом трения, зависящим от соотношения феррита и перлита в основе, а также от количества и формы графита. В перлитных чугунах высокая износостойкость обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфорной эвтектики при наличии изолированных выделений пластинчатого графита.

Антифрикционные серые чугуны используют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из чугунов марок АЧС-1 и АЧС-2, а для работы в паре с термически необработанными валами применяют чугун АЧС-3.

Антифрикционные высокопрочные (с шаровидным графитом) чугуны изготовляют с перлитной структурой - АЧВ-1 и ферритно-перлитной (50 % перлита) - АЧВ-2. Чугун АЧВ-1 используют для работы в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом.

Главное достоинство антифрикционных чугунов по сравнению с антифрикционными бронзами - низкая стоимость, а основной недостаток - плохая прирабатываемость, что требует точного сопряжения трущихся поверхностей.

Белый чугун — это разновидность чугуна, которая в своём составе содержит углеродные соединения. В этом сплаве они называются цементитами. Своё название подобный металл получил благодаря характерному белому цвету и блеску, который хорошо виден на изломе. Этот блеск проявляется благодаря тому, что в составе подобного чугуна отсутствуют большие включения графита. В процентном отношении, он составляет не более 0,3%. Поэтому обнаружить его можно только спектральным или химическим анализом.

Состав и виды белого чугуна

Белый чугун состоит из так называемой цементитной эвтектики. В связи с этим его делят на три категории:

  • Доэвтектические. Это такие сплавы, в которых углерод не превышает 4,3% от общего состава. Он получается после полного остывания. В итоге приобретает характерную структуру таких элементов как перлит, вторичный цементит и ледебурит.
  • Эвтектические. У них содержание углерода равняется 4,3%.
  • Заэвтектический белый чугун. Содержание превышает 4,35% и может достигать 6,67%.

Кроме приведенной классификации его разделяют на обыкновенный, отбеленный и легированный.

Внутренняя структура белого чугуна представляет собой сплав двух элементов: железа и углерода. Несмотря на высокотемпературное производство в нём сохраняется структура с мелкой зернистостью. Поэтому если надломить деталь из такого металла будет наблюдаться характерный белый цвет. Кроме этого, в структуре доэвтектического сплава, например, твёрдых марок, кроме перлита и вторичного цементита всегда присутствует цементит. Его процентное содержание может приближаться к 100%. Это характерно для эвтектического металла. Для третьего вида структура представляет собой состав из эвтектики (Л п) и первичного цементита.

Одной из разновидностей подобных сплавов является так называемый отбелённый чугун. Его основу, то есть сердцевину, составляет серый или высокопрочный чугун. Поверхностный слой содержит высокий процент таких элементов, как ледебурит и перлит. Эффекта отбеливания глубиной до 30 мм добиваются, используя метод быстрого охлаждения. В результате поверхностный слой получается из белого цвета, а далее отливка состоит из обыкновенного серого сплава.

В зависимости от процентного содержания легированных добавок, различают следующие виды металла:

  • низколегированные (в них содержится легирующих элементов не более 2,5%);
  • среднелегированные (процент подобных элементов достигает 10%);
  • высоколегированные (в них количество легирующих добавок превышает 10%).

В качестве легирующих добавок применяют достаточно распространённые элементы. Полученный таким образом легированный белый чугун приобретает новые, заранее заданные свойства.

Свойства белого чугуна

Любой чугунный сплав, с одной стороны, очень прочный, но в то же время обладает достаточной хрупкостью. Поэтому в качестве основных положительных свойств белого чугуна можно выделить:

  • Высокую твёрдость. Это значительно затрудняет обработку деталей, в частности, резанием.
  • Очень высокое удельное сопротивление.
  • Отличную износостойкость.
  • Хорошую стойкость к повышенному тепловому воздействию.
  • Достаточную коррозийную стойкость, в том числе, к различным кислотам.

Белые чугуны, с пониженным процентом углерода, обладают большей устойчивостью к высоким температурам. Это свойство используется для снижения количества трещин в отливках.

К недостаткам следует отнести:

  • Низкие литейные свойства. Он имеет плохое заполнение отливочных форм. Во время заливки могут образовываться внутренние трещины.
  • Повышенная хрупкость.
  • Плохая обрабатываемость самих отливок и деталей из белого чугуна.
  • Большая усадка, которая может достигать 2%.
  • Низкая стойкость к ударным воздействиям.

Ещё одним недостатком является плохая свариваемость. Проблемы в сварке деталей из подобного материала вызваны тем, что в момент сварки происходит образование трещин, как при нагреве, так и при охлаждении.

Маркировка белого чугуна

Для маркировки белого чугуна применяют буквы русского алфавита и цифры. Если в нём имеются примеси, то маркировка начинается с буквы «Ч». Состав имеющихся легирующих добавок можно определить по последующим буквам П, ПЛ, ПФ, ПВК. Они свидетельствую о наличии кремния. Если полученный металл обладает повышенной износостойкостью, то его маркировка будет начинаться с буквы «И», например ИЧХ, ИЧ. Например, наличие в маркировке обозначения «Ш», означает, что в структуре сплава имеется графит шаровидной формы.

Цифры указывают на количество дополнительных веществ, присутствующих в белом чугуне.

Марка ЧН20Д2ХШ расшифровывается следующим образом. Это жаропрочный высоколегированный металл. Он содержит следующие элементы: никеля — 20%, меди — 2%, хрома — 1%. Остальные элементы — это железо, углерод, графит шаровидной формы.

Область применения

Этот сплав используют в следующих отраслях: машиностроение, станкостроение, судостроение. Из него производят некоторые элементы бытовых изделий. В машиностроении из него изготавливают: детали грузовых и легковых автомобилей, тракторов, комбайнов и другой сельскохозяйственной техники. Применение легирующих добавок позволяет получать специально заданные свойства. Например, используют при изготовлении плит с различной формой поверхности.

Отбелённый чугун имеет достаточно ограниченную область применения. Из него производят детали несложной конфигурации. Например: шары для мельниц, колеса различного назначения, детали для прокатных станов.

Широкое применение он получил при производстве деталей таких крупных агрегатов, как гидравлические и формовочные машины, другие промышленные механизмы этого направления. Специфическая особенность их работы заключается в том, что они постоянно подвергаются воздействию абразивного материала.

В машиностроении применяют отливки из серого, ковкого и высокопрочного чугуна. Эти чугуны отличаются от белого чугуна тем, что у них весь углерод или большая его часть находится в сво-бодном состоянии в виде графита (а у белого чугуна весь углерод находится в виде цементита).

Структура указанных чугунов состоит из металлической основы аналогично стали (перлит, феррит) и неметаллических включений — графита.

Серый, ковкий и высокопрочный чугуны отличаются друг от дру-га в основном формой графитовых включений. Это и определяет раз-личие механических свойств указанных чугунов.

У серого чугуна графит (при рассмотрении под микро-скопом) имеет форму пластинок.

Графит обладает низкими механическими свойствами. Он нару-шает сплошность металлической основы и действует как надрез или мелкая трещина. Чем крупнее и прямолинейнее формы графи-товых включений, тем хуже механические свойства серого чугуна.

Основное отличие высокопрочного чу-гуна заключается в том, что графит в нем имеет шаровидную (ок-ругленную) форму. Такая форма графита лучше пластинчатой, так как при этом значительно меньше нарушается сплошность металли-ческой основы.

Ковкий чугун получают длительным отжигом отливок из белого чугуна, в результате которого образуется графит хлопьевид-ной формы — углерод отжига.

Механические свойства рассматриваемых чугунов можно улуч-шить термической обработкой. При этом необходимо помнить, что в чугунах создаются значительные внутренние напряжения, поэто-му нагревать чугунные отливки при термической обработке следу-ет медленно, чтобы избежать образования трещин.

Отливки из чугуна подвергают следующим видам термической обработки.

Низкотемпературный отжиг. Чтобы снять внутренние напря-жения и стабилизовать размеры чугунных отливок из серого чугуна, применяют естественное старение или низкотемпературный от-жиг.

Более старым способом является естественное старе-ние , при котором отливка после полного охлаждения претерпева-ет длительное вылеживание — от 3—5 месяцев до нескольких лет. Естественное старение применяют в том случае, когда нет требуемо-го оборудования для отжига. Этот способ в настоящее время почти не применяют; производят главным образом низкотемпературный отжиг. Для этого отливки после полного затвердевания укладыва-ют в холодную печь (или печь с температурой 100—200° С) и вместе с ней медленно, со скоростью 75—100° С в час нагревают до 500— 550° С, при этой температуре их выдерживают 2—5 часов и охлаж-дают до 200° С со скоростью 30—50° в час, а затем на воздухе.

Графитизирующий отжиг .

При отливке изделий возможен час-тичный отбел серого чугуна с поверхности или даже по всему сечению. Чтобы устранить отбел и улучшить обрабатываемость чугуна, производится высокотемпературный графитизирующий отжиг с вы-держкой при температуре 900—950° С в течение 1—4 часов и охлаж-дением изделий до 250—300° С вместе с печью, а затем на воздухе. При таком отжиге в отбеленных участках цементит Fe 3 Cраспадает-ся на феррит и графит, вследствие чего белый или половинчатый чугун переходит в серый.

Нормализация.

Нормализации подвергают отливки простой фор-мы и небольших сечений. Нормализация проводится при 850—900° С с выдержкой 1—3 часа и последующим охлаждением отливок на воз-духе. При таком нагреве часть углерода-графита растворяется в аустените; после охлаждения на воздухе металлическая основа полу-чает структуру трооститовидного перлита с более высокой твер-достью и лучшей сопротивляемостью износу. Для серого чугуна нормализацию применяют сравнительно редко, более широко приме-няют закалку с отпуском.

Закалка.

Повысить прочность серого чугуна можно его закалкой. Она производится с нагревом до 850—900° С и охлаждением в воде. Закалке можно подвергать как перлитные, так и ферритные чугу-ны. Твердость чугуна после закалки достигает НВ 450—500. В структуре закаленного чугуна имеются мартенсит со значительным количеством остаточного аустенита и выделения графита. Эффек-тивным методом повышения прочности и износоустойчивости серого чугуна является изотермическая закалка, которая производится ана-логично закалке стали.

Высокопрочные чугуны с шаровидным графитом можно под-вергать пламенной или высокочастотной поверхностной закалке. Чугунные детали после такой обработки имеют высокую поверхностную твердость, вязкую сердцевину и хорошо сопротивляются ударным нагрузкам и истиранию.

Легированные серые чугуны и высокопрочные магниевые чугуны иногда подвергают азотированию. Поверхностная твердость азоти-рованных чугунных изделий достигает HV600—800° С; такие дета-ли имеют высокую износоустойчивость. Хорошие результаты дает сульфидирование чугуна; так, например, сульфидированные порш-невые кольца быстро прирабатываются, хорошо сопротивляются ис-тиранию, и срок их службы повышается в несколько раз.

Отпуск.

Чтобы снять закалочные напряжения, после закалки производят отпуск. Детали, предназначенные для работы на истира-ние, проходят низкий отпуск при температуре 200—250° С. Чугун-ные отливки, не работающие на истирание, подвергаются высокому отпуску при 500—600° С. При отпуске закаленных чугунов твер-дость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в структуре закаленного чугуна большое ко-личество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчивость мартенсита.

Для отжига на ковкий чугун применяют белый чугун примерно следующего химического состава: 2,5—3,2% С; 0,6—0,9% Si; 0,3— 0,4% Μη; 0,1-0,2% Ρ и 0,06-0,1% S.

Существуют два способа отжига на ковкий чугун:

графитизирующий отжиг в нейтральной среде, основанный на разложении цементита на феррит и углерод отжига;

обезуглероживающий отжиг в окислительной среде, основанный на выжигании углерода.

Отжиг на ковкий чугун по второму способу занимает 5—6 суток, поэтому в настоящее время ковкий чугун получают главным обра-зом графитизацией. Отливки, очищенные от песка и литников, упаковывают в металлические ящики либо укладывают на поддоне, а затем подвергают отжигу в методических, камерных и других от-жигательных печах.

Процесс отжига состоит из двух стадий графитизации. Первая стадия заключается в равномерном нагреве отливок до 950—1000° С свыдержкой 10—25 часов; затем температуру понижают до 750— 720° С при скорости охлаждения 70—100° С в час. На второй ста-дии при температуре 750—720° С дается выдержка 15—30 часов, затем отливки охлаждаются вместе с печью до 500—400° С и при этой температуре извлекаются на воздух, где охлаждаются с произ-вольной скоростью. При таком ступенчатом отжиге в области темпе-ратур 950—1000° С идет распад (графитизация) цементита. В ре-зультате отжига по такому режиму структура ковкого чугуна пред-ставляет собой зерна феррита с включениями гнезд углерода отжи-га — графита.

Перлитный ковкий чугун получается в результате неполного от-жига: после графитизации при 950—1000° С чугун охлаждается вместе с печью. Структура перлитного ковкого чугуна состоит из перлита и углерода отжига.

Чтобы повысить вязкость, перлитный ковкий чугун подвергают сфероидизации при температуре 700—750° С, что создает структуру зернистого перлита.

Чтобы ускорить процесс отжига на ковкий чугун, изделия из белого чугуна подвергают закалке, затем проводят графитизацию при 1000—1100° С Ускорение графитизации закаленных чугунов при отжиге объясняется наличием большого количества центров графитизации, образовавшихся при закалке. Это дает возможность сократить время отжига закаленных отливок до 15—7 часов.

Термическая обработка ковкого чугуна.

Чтобы повысить проч-ность и износоустойчивость, ковкие чугуны подвергают нормализа-ции или закалке с отпуском. Нормализация ковкого чугуна произ-водится при 850—900° С с выдержкой при этой температуре 1—1,5 часа и охлаждением на воздухе. Если заготовки имеют повышенную твердость, их следует подвергать высокому отпуску при 650—680° С с выдержкой 1—2 часа.