Другое

Теория массового обслуживания. Три основы теории массового обслуживания

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

(Теория очередей)

1. Элементы теории массового обслуживания

Многие экономические организации и системы, получающие прибыль за счет обслуживания клиентов, можно достаточно точно описать с помощью совокупности математических методов и моделей, которые получили название теории массового обслуживания (ТМО). Рассмотрим основные аспекты ТМО.

1.1 Компоненты и классификация моделей массового обслуживания

Системы массового обслуживания (СМО)- это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем, чтобы приступить к его об служиванию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить:

· магазины;

· ремонтные мастерские;

· почтовые отделения;

· посты технического обслуживания автомобилей, посты ремонта автомобилей;

· персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;

· аудиторские фирмы;

· отделы налоговых инспекций, занимающиеся приемкой и проверкой текущей отчетности предприятий;

· телефонные станции и т.д.

Основными компонентами системы массового обслуживания любого вида являются:

· входной поток поступающих требований или заявок на обслуживание;

· дисциплина очереди;

· механизм обслуживания.

Входной поток требований. Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.


Дисциплина очереди - это важный компонент системы массово го обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

Первым пришел - первый обслуживаешься;

Пришел последним - обслуживаешься первым;

Случайный отбор заявок;

Отбор заявок по критерию приоритетности;

Ограничение времени ожидания момента наступления обслужи вания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая дли на очереди»).

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся: продолжительность процедуры обслуживания и количество требований, удовлетворяемых в результате выполнения каждой такой процедуры. Для аналитического описания характеристик процедуры обслу живания оперируют понятием «вероятностное распределение вре мени обслуживания требований».

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверж дать, что имеет место параллельное обслуживание.

Система обслуживания может состоять из нескольких разно типных каналов обслуживания, через которые должно пройти каж дое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно. Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Рассмотрев основные компоненты систем обслуживания, можно констатировать, что функциональные возможности любой системы массового обслуживания определяются следующими основными факторами:

· вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);

· вероятностным распределением времени продолжительности обслуживания;

· конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

· количеством и производительностью обслуживающих каналов;

· дисциплиной очереди;

· мощностью источника требований.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

· вероятность немедленного обслуживания поступившей заявки;

· вероятность отказа в обслуживании поступившей заявки;

· относительная и абсолютная пропускная способность системы;

· средний процент заявок, получивших отказ в обслуживании;

· среднее время ожидания в очереди;

· средняя длина очереди;

· средний доход от функционирования системы в единицу времени и т.п.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Независимо от характера процесса, протекающего в системе мас сового обслуживания, различают два основных вида СМО:

Системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и сразу же покидает очередь;

Системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Системы массового обслуживания с ожиданием делятся на системы с ограниченным ожиданием и системы с неограниченным ожиданием.

В системах с ограниченным ожиданием может ограничиваться:

Длина очереди;

Время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоящая в очереди, ждет обслуживание неограниченно долго, т.е. пока не подойдет очередь.

Все системы массового обслуживания различают по числу каналов обслуживания:

Одноканальные системы;

Многоканальные системы.

Приведенная классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

Определим характеристики систем массового обслуживания.

1.2. Одноканальная СМО с отказами

Простейшей одноканальной моделью с вероятностными входным потоком и процедурой обслуживания является модель, характеризуемая показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид где λ - интенсивность поступления заявок в систему (среднее число заявок, поступающих в систему за единицу времени).

Плотность распределения длительностей обслуживания:

где – интенсивность обслуживания, tоб – среднее время обслуживания одного клиента.

Пусть система работает с отказами. Можно определить абсолютную и относительную пропускную способность системы. Относительная пропускная способность равна доли обслуженных заявок относительно всех поступающих и вычисляется по формуле: . Эта величина равна вероятности Р0 того, что канал обслуживания свободен.

Абсолютная пропускная способность (А) - среднее число заявок, которое может обслужить система массового обслуживания в единицу времени: Вероятность отказа в обслуживании заявки будет равна вероятности состояния «канал обслуживания занят»:

Данная величина Ротк может быть интерпретирована как средняя доля необслуженных заявок среди поданных.

Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность потока автомобилей λ 1,0 (автомобиль в час). Средняя продолжительность обслуживания - tоб=1,8 часа.

Требуется определить в установившемся режиме предельные значения:

a) относительной пропускной способности q;

b) абсолютной пропускной способности А;

c) вероятности отказа Ротк;

Сравнить фактическую пропускную способность СМО с номинальной, которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Определим интенсивность потока обслуживания: Вычислим относительную пропускную способность: Величина q означает, что в установившемся режиме система будет обслуживать примерно 35% прибывающих на пост автомобилей.

Абсолютную пропускную способность определим по формуле: А=λ×q=1×0,356=0,356.

Это означает, что система способна осуществить в среднем 0,356 обслуживания автомобилей в час.

Вероятность отказа:

Ротк=1-q=1-0,356=0,644.

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

Определим номинальную пропускную способность системы:

Аном= (автомобилей в час). Оказывается, что Аном в раза больше, чем фактическая пропускная способность, вычисленная с учетом случайного характера потока заявок и времени обслуживания.

1.3 . Одноканальная СМО с ожиданием и ограниченной очередью

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Рассмотрим систему с ограниченной очередью. Предположим, что независимо оттого, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), из которых одна обслуживается, а (N-1) ожидают, Клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте и такие заявки теряются. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.

Обозначим Рn - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .

С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):

· вероятность отказа в обслуживании заявки: Pотк=РN=

· относительная пропускная способность системы:

· абсолютная пропускная способность:

среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

среднее число заявок (клиентов) в очереди (длина очереди):

Рассмотрим пример одноканальной СМО с ожиданием.

Пример. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3, то есть (N- 1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику имеет интенсивность λ=0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно =1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

Интенсивность потока обслуживаний автомобилей:

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

Вычислим вероятности нахождения п заявок в системе:

P1=r∙P0=0,893∙0,248=0,221;

P2=r2∙P0=0,8932∙0,248=0,198;

P3=r3∙P0=0,8933∙0,248=0,177;

P4=r4∙P0=0,8934∙0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

Pотк=Р4=r4∙P0≈0,158.

Относительная пропускная способность поста диагностики:

q=1–Pотк=1-0,158=0,842.

Абсолютная пропускная способность поста диагностики

А=λ∙q=0,85∙0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

Среднее время пребывания автомобиля в системе:

Средняя продолжительность пребывания заявки в очереди на обслуживание:

Wq=Ws-1/μ=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

Lq=λ∙(1-PN)∙Wq=0,85∙(1-0,158)∙1,423=1,02.

Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обнаруживает автомобили в среднем в 15,8% случаев (Ротк=0,158).

1.4. Одноканальная СМО с ожиданием и неограниченной очередью

Перейдем теперь к рассмотрению одноканальной СМО с ожиданием без ограничения на вместимость блока ожидания (т.е. Ν → ∞). Остальные условия функционирования СМО остаются без изменений.

Устойчивое решение в такой системе существует только тогда, когда λ<μ, то есть заявки должны обслуживаться с большей скоростью, чем поступают, в противном случае очередь может разрастись до бесконечности.

Вероятность того, что в системе находится п заявок, вычисляется по формуле

Pn=(1-r)rn, n=0,1,2,…,

где r = λ/μ <1.

Характеристики одноканальной СМО с ожиданием, без ограничения на длину очереди, следующие:

среднее число находящихся в системе клиентов (заявок) на обслуживание:

средняя продолжительность пребывания клиента в системе:

среднее число клиентов в очереди на обслуживание:

средняя продолжительность пребывания клиента в очереди:

Пример. Вспомнив о ситуации, рассмотренной в предыдущем примере, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслуживание автомобилей, т.е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероятностных характеристик:

вероятности состояний системы (поста диагностики);

среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

среднюю продолжительность пребывания автомобиля в системе

(на обслуживании и в очереди);

среднее число автомобилей в очереди на обслуживании;

среднюю продолжительность пребывания автомобиля в очереди.

Решение. Параметр потока обслуживания и приведенная интенсивность потока автомобилей ρ определены в предыдущем примере:

μ=0,952; ρ=0,893.

Вычислим предельные вероятности системы по формулам

P0=1-r=1-0,893=0,107;

P1=(1-r)·r=(1-0,893)·0,893=0,096;

P2=(1-r)·r2=(1-0,893)·0,8932=0,085;

P3=(1-r)·r3=(1-0,893)·0,8933=0,076;

P4=(1-r)·r4=(1-0,893)·0,8934=0,068;

P5=(1-r)·r5=(1-0,893)·0,8935=0,061 и т.д.

Следует отметить, что Р0 определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В нашем примере она составляет 10, 7%, так как Р0=0,107.

Среднее число автомобилей, находящихся в системе (на обслуживании и в очереди):

ед.

Средняя продолжительность пребывания клиента в системе:

Среднее число автомобилей в очереди на обслуживание:

Средняя продолжительность пребывания автомобиля в очереди:

Относительная пропускаемая способность системы равна единицы, так как все поступившие заявки рано или поздно будут обслужены:

Абсолютная пропускная способность:

A=λ∙q=0,85∙1=0,85.

Следует отметить, что предприятие, осуществляющее диагностику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятие ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для стоянки прибывших автомобилей как в предыдущем примере было равно трем. Частота m возникновения ситуаций, когда прибывающий на пост диагностике автомобиль не имеет возможности присоединить к очереди:

В нашем примере при N=3+1=4 и r=0,893,

m=λ∙P0∙ r4=0,85∙0,248∙0,8934=0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквивалентно тому, что пост диагностики в среднем за смену (день) будет терять 12∙0,134=1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить количество обслуживающих клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) пост диагностики. Ясно, что решение относительно расширения площади для стоянки автомобиля, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей клиентов при наличие всего трех мест для стоянки этих автомобилей.

1.5. Многоканальная СМО с отказами

В подавляющем большинстве случаев на практике система массового обслуживания является многоканальными, то есть параллельно могут обслуживаться несколько заявок, и, следовательно, модели с обслуживающими каналами (где число каналов обслуживания n>1) представляют несомненный интерес.

Процесс массового обслуживания, описываемый данной моделью, характеризуется интенсивностью входного потока λ, при этом параллельно может обслуживаться не более n клиентов (заявок). Средняя продолжительность обслуживания одной заявки равняется 1/μ. Режим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих каналов системы, при чем длительность процедуры обслуживания каждым из каналов является случайной величиной, починенной экспоненциальному закону распределения. Конечная цель использования параллельно включенных обслуживающих каналов заключается в повышение (по сравнению с одноканальной системой) скорости обслуживания требований за счет обслуживания одновременно n клиентов.

Стационарное решение системы имеет вид:

,где ,

Формулы для вычисления вероятностей называются формулами Эрланга.

Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме:

вероятность отказа:

ак как заявка получает отказ, если приходит в момент, когда все каналов заняты. Величина Ротк характеризует полноту обслуживания входящего потока;

вероятность того, что заявка будет принята к обслуживанию (она же – относительная пропускная способность системы) дополняет Ротк до единицы:

абсолютная пропускная способность

среднее число каналов, занятых обслуживанием () следующее:

Величина характеризует степень загрузки СМО.

Пример. Пусть n-канальная СМО представляет собой вычислительный центр (ВЦ) с тремя (n=3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступающих на ВЦ, имеет интенсивность λ=1 задача в час. Средняя продолжительность обслуживания tоб=1,8 час.

Требуется вычислить значения:

Вероятности числа занятых каналов ВЦ;

Вероятности отказа в обслуживании заявки;

Относительной пропускной способности ВЦ;

Абсолютной пропускной способности ВЦ;

Среднего числа занятых ПЭВМ на ВЦ.

Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза.

Определим параметр μ потока обслуживаний:

Предельные вероятности состояний найдем по формулам Эрланга:

Вероятность отказа в обслуживании заявки

Относительная пропускная способность ВЦ

Абсолютная пропускная способность ВЦ:

Среднее число занятых каналов – ПЭВМ

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех – остальные полтора будут простаивать. Работу рассмотренного ВЦ вряд ли можно считать удовлетворительной, так как центр не обслуживает заявки в среднем в 18% случаев (Р3= 0,180). Очевидно, что пропускную способность ВЦ при данных λ и μ можно увеличить только за счет увеличения числа ПЭВМ.

Определим, сколько нужно использовать ПЭВМ, чтобы сократить число не обслуженных заявок, поступающих на ВЦ, в 10 раз, т.е. чтобы вероятность отказа в решении задач не превосходила 0,0180. Для этого используем формулу вероятности отказа:

Составим следующую таблицу:

n
P0 0,357 0,226 0,186 0,172 0,167
Pотк 0,673 0,367 0,18 0,075 0,026

Анализируя данные таблицы, следует отметить, что расширение числа каналов ВЦ при данных значениях λ и μ до 6 единиц ПЭВМ позволит обеспечить удовлетворение заявок на решение задач на 99,22%, так как при n = 6 вероятность отказа в обслуживании (Ротк) составляет 0,0078.

6.6. Многоканальная СМО с ожиданием

Рассмотрим многоканальную систему массового обслуживания с ожиданием. Процесс массового обслуживания при этом характеризуется следующим: входной и выходной потоки имеют интенсивности λ и μ соответственно, параллельно обслуживаться могут не более С клиентов, то есть система имеет С каналов обслуживания. Средняя продолжительность обслуживания одного клиента равна .

Вероятности того, что в системе находятся п заявок (С обслуживаются, остальные ожидают в очереди) равна: ,где

Решение будет действительным, если выполняется следующее условие:

Остальные вероятностные характеристики функционирования в стационарном режиме многоканальной СМО с ожиданием и неограниченной очередью определяется по следующим формулам:

среднее число клиентов в очереди на обслуживание

;

среднее число находящихся в системе клиентов (заявок на обслуживание и в очереди)

средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди

средняя продолжительность пребывания клиента в системе

Рассмотрим примеры многоканальной системы массового обслуживания с ожиданием.

Пример. Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неисправных механизмов, прибывающих в мастерскую, - пуассоновский и имеет интенсивность λ=2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно tоб=0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской может расти практически неограниченно.

Требуется вычислить следующие предельные значения вероятностных характеристик системы:

Вероятность состояний системы;

Среднее число заявок в очереди на обслуживание;

Среднее число находящихся в системе заявок;

Среднюю продолжительность пребывания заявки в очереди;

Среднюю продолжительность пребывания заявки в системе.

Определим параметр потока обслуживаний

Приведенная интенсивность потока заявок

ρ=λ/μ=2,5/2,0=1,25,

при этом λ/μ ∙с=2,5/2∙3=0,41<1.

Поскольку λ/μ∙с<1, то очередь не растет безгранично и в системе наступает предельный стационарный режим работы.

Вычислим вероятности состояний системы:


Вероятность отсутствия очереди у мастерской

Ротк≈Р0+Р1+Р2+Р3≈0,279+0,394+0,218+0,091=0,937.

Среднее число заявок в очереди на обслуживание Среднее число находящихся в системе заявок

Ls=Lq+ =0,111+1,25=1,361.

Средняя продолжительность пребывания механизма в очереди на обслуживание суток

Средняя продолжительность пребывания механизма в мастерской (в системе)

суток.

Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

  • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
  • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
  • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
  • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
  • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
  • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

Многоканальная система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

Смешанные системы

  1. Система с ограничением на длину очереди .
    Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
    Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
  2. Система с ограничением на длительность пребывания заявки в очереди .
    Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

Математическое описание СМО

СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
Простейшим называют поток, обладающий следующими свойствами:
  • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
  • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
  • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, .
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.

Задача 1. На диспетчерский пульт поступает поток заявок, который является потоком Эрланга второго порядка. Интенсивность потока заявок равна 6 заявок в час. Если диспетчер в случайный момент оставляет пульт, то при первой же очередной заявке он обязан вернуться к пульту. Найти плотность распределения времени ожидания очередной заявки и построить ее график. Вычислить вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут. Решение . Поскольку поток Эрланга второго порядка является стационарным потоком с ограниченным последействием, то для него справедлива формула Пальма

где f1(θ)- плотность распределения вероятностей для времени ожидания первого ближайшего события;
λ - интенсивность потока;
- порядок потока;
(θ) - функция распределения вероятностей для времени между двумя соседними событиями потока Эрланга - го порядка (Э).
Известно, что функция распределения для потока Э имеет вид

. (2)

По условиям задачи поток заявок является Эрланговским порядка =2. Тогда из (1) и (2) получим
.
Из последнего соотношения при λ=6 будем иметь

f1(θ)=3е-6θ(1+6 θ), θ≥0. (3)

Построим график функции f1(θ) . При θ <0 имеем f1(θ) =0 . При θ =0 , f1(0)=3 . Рассмотрим предел

При вычислении предела для раскрытия неопределенности типа использовано правило Лопиталя . По результатам исследований строим график функции f1(θ) (Рис. 1).


Обратим внимание на размерности времени в тексте задачи: для интенсивности это заявки в час, для времени-минуты. Перейдем к одним единицам времени: 10 мин=1/6 час, 20 мин=1/3 час. Для этих значений можно вычислить f1(θ) и уточнить характер кривой


Эти ординаты указаны на графике над соответствующими точками кривой.
Из курса теории вероятностей известно, что вероятность попадания случайной величины Х в отрезок [α, β] численно равна площади под кривой плотности распределения вероятностей f(х) . Эта площадь выражается определенным интегралом

Следовательно, искомая вероятность равна

Этот интеграл легко вычисляется по частям, если положить
U=1+6θ и dV=е-6θ . Тогда dU=6 и V= .
Используя формулу получим

Ответ: вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут равна 0,28.

Задача 2. Дисплейный зал имеет 5 дисплеев. Поток пользователей простейший. Среднее число пользователей, посещающих дисплейный зал за сутки, равно 140. Время обработки информации одним пользователем на одном дисплее распределено по показательному закону и составляет в среднем 40 минут. Определить, существует ли стационарный режим работы зала; вероятность того, что пользователь застанет все дисплеи занятыми; среднее число пользователей в дисплейном зале; среднее число пользователей в очереди; среднее время ожидания свободного дисплея; среднее время пребывания пользователя в дисплейном зале. Решение. Рассматриваемая в задаче СМО относится к классу многоканальных систем с неограниченной очередью. Число каналов =5. Найдем λ-интенсивность потока заявок: где (час.) - среднее время между двумя последовательными заявками входящего потока пользователей. Тогда польз./час.

Найдем -интенсивность потока обслуживания: , где М[Т обсл.]=40 мин=0,67 часа - среднее время обслуживания одного пользователя одним дисплеем,

тогда польз/час.

Таким образом, классификатор данной системы имеет вид СМО (5, ∞; 5,85; 1,49).
Вычислим коэффициент загрузки СМО . Известно, что для СМО такого класса стационарный режим существует, если отношение коэффициента загрузки системы к числу каналов меньше единицы. Находим это отношение
.
Следовательно, стационарный режим существует. Предельное распределение вероятностей состояний вычисляется по формулам


Поскольку =5, имеем

Вычислим Р*- вероятность того, что пользователь застанет все дисплеи занятыми. Очевидно, она равна сумме вероятностей таких событий: все дисплеи заняты, очереди нет (р5); все дисплеи заняты, один пользователь в очереди (р6); все дисплеи заняты, два пользователя в очереди (р7) и так далее. Поскольку для полной группы событий сумма вероятностей этих событий равна единице, то справедливо равенство

Р*=р5+р6+р7+…=1 - ро - р1 - р2 - р3 - р4.

Найдем эти вероятности: ро =0,014; р1 =3,93*0,014; р2 =7,72*0,014; р3 =10,12*0,014; р4 =9,94*0,014.
Вынося за скобки общий множитель, получим
Р*=1-0,0148*(1+3,93+7,72+10,12+9,94)=1-0,014*32,71=1-0,46=0,54.
Используя формулы для вычисления показателей эффективности? найдем:

  • 1. среднее число пользователей в очереди

2. среднее число пользователей в дисплейном зале

3. среднее время ожидания свободного дисплея

4. среднее время пребывания пользователя в дисплейном зале

Ответ: стационарный режим работы дисплейного зала существует и характеризуется следующими показателями Р* =0,54; пользователя; пользователя; ; .

Задача 3. В двухканальную систему массового обслуживания (СМО) с отказами поступает стационарный пуассоновский поток заявок. Время между поступлениями двух последовательных заявок распределено по показательному закону с параметром λ=5 заявок в минуту. Длительность обслуживания каждой заявки равна 0,5 мин. Методом Монте-Карло найти среднее число обслуженных заявок за время 4 мин. Указание: провести три испытания. Решение. Изобразим статистическое моделирование работы заданной СМО с помощью временных диаграмм. Введем следующие обозначения для временных осей:
Вх -входящий поток заявок, здесь ti -моменты поступления заявок; Ti -интервалы времени между двумя последовательными заявками. Очевидно, что ti =ti -1 i .
К1-первый канал обслуживания;
К2-второй канал обслуживания; здесь жирные линии на временной оси обозначают интервалы занятости канала. Если оба канала свободны, то заявка становится под обслуживание в канал К1, в случае его занятости заявка обслуживается каналом К2.
Если заняты оба канала, то заявка покидает СМО необслуженной.
Вых ОБ-выходящий поток обслуженных заявок.
Вых ПТ-выходящий поток потерянных заявок за счет отказов СМО (случай занятости обоих каналов).
Статистические испытания продолжаются в течение временного интервала . Очевидно, что любое превышение времени tmax влечет за собой сброс заявки в выходящий поток Вых ПТ. Так на рис. 3 заявка №10, пришедшая в систему в момент t10 , не успевает обслужиться до момента tmax , так как t10+Тобсл.>tmax . Следовательно, она не принимается свободным каналом К1 на обслуживание и сбрасывается в Вых ПТ, получая отказ.


Рис. 3

Из временных диаграмм видно, что необходимо научиться моделировать интервалы Т i . Применим метод обратных функций. Поскольку случайная величина Тi распределена по показательному закону с параметром λ =5, то плотность распределения имеет вид f (τ)=5е-5τ . Тогда значение F(Ti) функции распределения вероятностей определяется интегралом

.

Известно, что область значений функции распределения F (T ) есть отрезок . Выбираем из таблицы случайных чисел число и определяем Т i из равенства , откуда . Однако, если . Поэтому можно сразу получать из таблицы случайных чисел реализации . Следовательно,
е-5Т i = ri , или –5Т i = lnri , откуда . Результаты вычислений удобно заносить в таблицу.
Для проведения испытания №1 были взяты случайные числа из приложения 2, начиная с первого числа первой строки. Далее выборка осуществлялась по строкам. Проведем еще два испытания.
Обратите внимание на выборку случайных чисел из таблицы приложения 2, если в испытании №1 последнее случайное число для заявки №16 было 0,37 (первое случайное число во второй строке), то испытание №2 начинается со следующего за ним случайного числа 0,54. Испытание №2 содержит последним случайное число 0,53 (пятое число в третьей строке). Следовательно, третье испытание начнется с числа 0,19. Вообще в пределах одной серии испытаний случайные числа из таблицы выбираются без пропусков и вставок по определенному порядку, например, по строкам.

Таблица 1. ИСПЫТАНИЕ №1

№ зая-вки
i

Сл. число
ri

-ln ri
Тi

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1
Таблица 2 ИСПЫТАНИЕ №2

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

Таблица №3 ИСПЫТАНИЕ №3

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1

Таким образом, по результатам трех испытаний число обслуженных заявок составило соответственно: х1 =9, х2 =9, х3 =8. Найдем среднее число обслуженных заявок:

Ответ: среднее число заявок, обслуженных СМО за 4 минуты, равно 8,6(6).

4 – Основы теории массового обслуживания.

Определение 1. Пусть имеется некоторая физическая система S , которая с течением времени меняет свое состояние (переходит из одного состояния в другое), причем заранее неизвестным, случайным образом. Тогда мы будем говорить, что в системе S протекает случайный процесс.

Под «физической системой» можно понимать что угодно: техническое устройство, предприятие, живой организм и т.д.

Пример. S техническое устройство, состоящее из ряда узлов, которые время от времени выходят из строя, заменяются или восстанавливаются. Процесс, протекающий в системе, – случайный. Вообще, если подумать, труднее привести пример «неслучайного» процесса, чем случайного. Даже процесс хода часов – классический пример точной, строго выверенной работы («работают как часы») подвержен случайным изменениям (уход вперед, отставание, остановка).

Определение 2. Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы наблюдаем процесс со стороны и в момент t 0 знаем состояние системы S 0 и всю предысторию процесса, все, что было при t < t 0 . Нас, естественно. Интересует будущее: t > t 0 . Можем ли мы его предугадать? В точности – нет. Наш процесс случайный, следовательно – непредсказуемый. Но какие-то вероятностные характеристики процесса в будущем мы найти можем. Например, вероятность того, что через некоторое время t система S окажется в состоянии S 1 или сохранит состояние S 0 и т.д.

Если процесс марковский, то предсказывать можно, только учитывая настоящее состояние системы S 0 и забыв о его «предыстории» (поведение системы при t < t 0 ). Само состояние S 0 , разумеется, зависит от прошлого, но как только оно достигнуто, о прошлом можно забыть. Т.е. в марковском процессе «будущее зависит от прошлого только через настоящее» .

Пример. Система S – счетчик Гейгера, на который время от времени попадают космические частицы; состояние системы в момент времени t характеризуется показаниями счетчика – числом частиц, пришедших до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в в момент t > t 0 счетчик покажет то или другое число частиц S 1 (или менее S 1 ) зависит от S 0 , но не зависит от того, в какие именно моменты приходили частицы до момента t 0 .

На практике часто встречаются процессы, которые если не в точности марковские, то могут быть в каком-то приближении рассмотрены как марковские. Например, S ­ – группа самолетов, участвующих в воздушном бою. Состояние системы характеризуется числом самолетов «красных» – x и «синих» – y , сохранившихся (не сбитых) к какому-то моменту. В момент t 0 нам известны численности сторон x 0 и y 0 . Нас интересует вероятность того, что в какой-то момент времени t 0 + t численный перевес будет на стороне «красных». От чего зависит эта вероятность? В первую очередь от того, в каком состоянии находится система в данный момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента времени t 0 самолеты.

В сущности любой процесс можно рассматривать как марковский, если все параметры из «прошлого», от которых зависит «будущее», перенести в «настоящее». Например, пусть речь идет о работе какого-то технического устройства; в какой-то момент времени t 0 оно ещё исправно, и нас интересует вероятность того, что оно проработает ещё время t . Если за настоящее время считать просто «система исправна», то процесс безусловно не марковский, потому что вероятность, что она не откажет за время t , зависит, в общем случае, от того, сколько времени она уже проработала и когда был последний ремонт. Если оба эти параметра (общее время работы и время после ремонта) включить в настоящее состояние системы. То процесс можно будет считать марковским.

Определение 3. Процесс называется с дискретными состояниями, если его возможные состояния S 1 , S 2 ,... можно заранее перечислить (перенумеровать), и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Определение 4. Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны, если переход может осуществиться, в принципе, в любой момент.

Мы будем рассматривать только процессы с дискретными состояниями.

Пример. Техническое устройство S состоит из двух узлов. Каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.

Рис.4.1

Возможные состояния системы:

S 0 – оба узла исправны;

S 1 – первый узел ремонтируется, второй исправен;

S 2 – второй узел ремонтируется, первый исправен;

S 3 – оба узла ремонтируются.

Стрелка, направленная из S 0 в S 1 означает момент отказа первого узла и т. д. На рисунке нет стрелки из состояния S 0 в состояние S 3 , поскольку вероятность того, что два прибора откажут одновременно, стремится к нулю.

Определение 5. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток сбоев на ЭВМ, поток вызовов на телефонной станции).

Важнейшей характеристикой потока событий является его интенсивность l – среднее число событий, приходящееся на единицу времени. интенсивность потока может быть постоянной (l = const ), так и переменной, зависящей от времени. Например, поток автомашин, движущихся по улице, днем интенсивнее, чем ночью, а поток автомашин с 14-ти до 15-ти часов дня можно считать постоянным.

Определение 6. Поток событий называется регулярным, если события следуют одно за другим через определенные, равные промежутки времени.

Определение 7. Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность l стационарного потока должна быть постоянной. Это отнюдь не означает, что фактическое число событий, появляющееся в единицу времени, постоянно, – нет, поток неизбежно (если только он не регулярный) имеет какие-то случайные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера: на один участок длины 1 может попасть больше, а на другой – меньше событий, но среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Например, поток вызовов, поступающих на АТС между 13 и 14 часами. Практически стационарен, но тот же поток в течение суток уже не стационарен.

Определение 8. Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. По сути это означает, что события, образующие поток, появляются в те или другие моменты независимо друг от друга, вызванные каждое своими собственными причинами.

Например, поток пассажиров, входящих в метро, практически не имеет последействия. А вот поток покупателей, отходящих от прилавка с купленными товарами, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).

Определение 9. Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами сразу.

Например поток клиентов к зубному врачу – обычно ординарный. Поток поездов, подходящих к станции – ординарен, а поток вагонов – неординарен.

Определение 10. Поток событий называется простейшим (или стационарным Пуассоновским), если он обладает сразу тремя свойствами: стационарен, ординарен и не имеет последействия, а сам входной поток распределен по закону Пуассона ().

Для описания случайного процесса, протекающего в системе с дискретными состояниями S 1 , S 2 , ..., S n часто пользуются вероятностями состояний p 1 ( t ),..., p n ( t ) , где p k ( t ) – вероятность того, что в момент времени t система находится в состоянии S k . Вероятности p k ( t ) удовлетворяют условию: .

Если процесс, протекающий в системе с дискретными состояниями и непрерывным временем является марковским, то для вероятностей состояний p 1 ( t ), ..., p n ( t ) можно составить систему линейных дифференциальных уравнений. При составлении этих уравнений удобно пользоваться графом состояний системы, на котором против каждой стрелки, ведущей из состояния в состояние, проставлена интенсивность потока событий, переводящего систему по стрелке (рис.4.2):

Рис.4.2

l ij – интенсивность потока событий, переводящего систему из состояния S i в состояние S j .

Правило создания системы линейных дифференциальный уравнений для нахождения вероятностей состояний.

Для каждого состояния выписывается собственное уравнение. В левой части каждого уравнения стоит производная , а в правой – столько членов, сколько стрелок связано непосредственно с данным состоянием; если стрелка ведет в данное состояние, то член имеет знак «+», иначе - знак «–». Каждый член равен интенсивности потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого стрелка выходит.

Т.о. система линейных дифференциальных уравнений в нашем случае имеет вид:

Начальные условия для интегрирования такой системы отражают состояние системы в начальный момент времени. Если, например, система при t =0 была в состоянии S k , то . Эти уравнения можно решать аналитически, но это удобно только тогда, когда число уравнений не превышает двух (иногда трех). В случае, когда уравнений оказывается больше, применяют численные методы.

Что будет происходить с вероятностями состояний при ? Будут ли p 1 ( t ), ..., p n ( t ) стремиться к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний: . p i – среднее относительное время пребывания системы в i -ом состоянии.

Как найти финальные вероятности? Поскольку все p i = const , то производные, стоящие в левой части каждого уравнения равны нулю. Т.о. мы получили систему линейных алгебраических уравнений. Поскольку ни одно уравнение в этой системе не имеет свободного члена, то система является вырожденной (т.е. все переменные будут выражены через одну). Чтобы этот избежать, необходимо воспользоваться нормировочным условием (), при этом любое уравнение можно отбросить.

Классификация систем массового обслуживания

По количеству обслуживающих приборов СМО делятся на одноканальные и многоканальные. Многоканальные СМО состоят из нескольких приборов, и каждый них может обслуживать заявку.

Также СМО подразделяются на системы без ожидания и с ожиданием. В первых заявка покидает очередь, если к моменту её прихода отсутствует хотя бы один канал, способный немедленно приступить к обслуживанию данной заявки. Вторые, в свою очередь, делятся на системы без ограничения и с ограничениями по длине очереди.

Также СМО делятся на системы с приоритетами и без них. В свою очередь системы с приоритетом делятся на СМО с прерыванием и без.

Одноканальная СМО с неограниченной очередью


Рис.4.3

Найдем вероятности p k :

Для состояния S 0 : , отсюда ;

Для состояния S 1 n : , подставляем полученное значение для p 1 : . Аналогично, .

Вероятность p 0 найдем из нормировочного условия :

, – геометрическая прогрессия, при r <1 сходится. – вероятность того, что нет заявок.

– вероятность того, что прибор занят обслуживанием заявки. r = l / m – мера загрузки одноканальной СМО.

В текущий момент времени в системе может быть 0, 1, 2, ..., k , ... заявок с вероятностями p 0 , p 1 p 2 , ... Математическое ожидание количества заявок:

учитывая, что , получим:

Средняя длина очереди равна разности между средним числом заявок в системе и средним числом заявок, находящихся под обслуживанием: .

Формулы Литтла

Рис.4.4

Первая формула Литтла позволяет определить время реакции СМО (время пребывания заявки в системе).

Пусть X ( t ) – число заявок, поступивших в СМО до момента времени t , Y ( t ) – покинувших СМО до t . Обе функции случайны и увеличиваются скачком на единицу в моменты прихода и ухода заявок. Тогда число заявок в системе в момент времени t можно определить как: . Рассмотрим очень большой промежуток времени T и вычислим среднее число заявок в системе:

.

Интеграл равен площади ступенчатой фигуры, ограниченной функциями X ( t ) и Y ( t ) , эта сумма состоит из прямоугольников, ширина которых равна единице, а длина – времени пребывания i -ой заявки в системе. Сумма распространяется на все заявки, поступившие в систему за время T . Правую часть домножим и разделим на l : . T l – среднее количество заявок, пришедших за время T . Поделив сумму всех времен t i на среднее число заявок, получим среднее время пребывания заявки в системе: .

Совершенно аналогично можно получить среднее время пребывания заявки в очереди: .

Многоканальная СМО с неограниченной очередью


Рис.4.5

Найдем вероятности p k :

Для состояния S 0 : ;

Для состояний S 1 S n : ;

Для S n +1 : ; ...

Для S n+s-1 : ;

Для S n+s : .

Из первых n +1 уравнений получаем:

Из последнего уравнения выражаем: и подставляем в предпоследнее: , . Тогда .

Продолжая аналогию: .

Теперь найдем p 0 , подставив полученные выражения в нормировочное условие (): . Отсюда .

Показатели эффективности СМО

– Вероятность потери требования в СМО. Особенно часто ею пользуются при исследовании военных вопросов. Например, при оценке эффективности противовоздушной обороны объекта она характеризует вероятность прорыва воздушных целей к объекту. Применительно к СМО с потерями она равна вероятности занятости обслуживанием требований всех n приборов системы. Чаще всего эту вероятность обозначают p n или p отк .

– Вероятность того, что обслуживанием требований в системе занято k приборов, равна p k .

– Среднее число занятых приборов: характеризует степень загрузки обслуживающей системы.

– Среднее число свободных от обслуживания приборов:.

– Коэффициент простоя приборов: .

– Коэффициент занятости оборудования: .

– Средняя длина очереди: , p k - вероятность того, что в системе находится k требований.

– Среднее число заявок, находящихся в сфере обслуживания: .

– Вероятность того, что число заявок в очереди, ожидающих начала обслуживания, больше некоторого числа m : . Этот показатель особенно необходим при оценке возможностей размещения требований при ограниченности времени для ожидания.

Кроме перечисленных критериев при оценке эффективности СМО могут быть использованы стоимостные показатели:

q об – стоимость обслуживания каждого требования в системе;

q ож – стоимость потерь, связанных с простаиванием заявок в очереди в единицу времени;

q у – убытки, связанные с уходом из системы заявки;

q k – стоимость эксплуатации каждого прибора в единицу времени;

q k пр – стоимость простоя единицы времени k -го прибора системы.

При выборе оптимальных параметров СМО по экономическим показателям можно использовать функцию стоимости потерь в системе (для СМО с ожиданием): T – интервал времени.

Для СМО с отказами: .

Для смешанных: .

Критерий экономической эффективности СМО: , с – экономический эффект, получаемый при обслуживании каждой заявки.

СМО замкнутого типа

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время T з смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как , – среднее время обслуживания станка, которое вычисляется как , где n – число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где – среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO : каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t 0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t 0 .

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m , где m – общее число станков. Тогда возможны следующие состояния:

S 0 – все станки работают, манипулятор стоит.

S 1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S 2 – работают m -2 станка, на одном станке идет смена заготовки, другой ожидает.

S 3 – работают m -2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

S m – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние S k из одного из возможных состояний S 1 , S 2 , ... S m зависит от случайного поступления заявок на обслуживание и вычисляется как:

p 0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S 1 до S m ­ . Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S 2 , – S m , при этом один станок обслуживается, а (k -1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

Применение метода Монте-Карло для решения задач,

связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t 1 , t 2 , ..., t k , ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t 1 , t 2 , ..., перейти к случайным величинам z 1 , z 2 , ..., z m , ... , таким образом, что:

Случайные величины z k являются длинами интервалов времени между последовательными моментами t k .

Совокупность случайных величин z i считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины z k , поэтому часто пользуются соответствующей функцией плотности f ( z 1 , z 2 ,..., z k ) .

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины z k независимы. Поэтому . Функции f i ( z i ) при i >1 представляют собой условные функции плотности при условии, что в начальный момент интервала z k ( i >1) поступила заявка. В отличие от этого функция f 1 ( z 1 ) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t 0 , t 0 + t ) не зависит от t 0 , а зависит только от t и k ). Для стационарных потоков без последействия имеют место соотношения:

где l – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется n св свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q =1/ m . В более сложных случаях вероятности q 1 , q 2 ,..., q m считаются зависящими от времени пребывания заявки в системе, времени, остающегося до получения отказа и других параметров.

· Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R = R ( t ) , задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время t p . Величину t p будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более t n ) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.

· Структура алгоритма, моделирующего

процесс обслуживания заявок

Рассмотрим однофазную СМО, имеющую n линий, на которые поступают заявки в случайные моменты времени t i . Если вмомент поступления заявки оказываются в наличии свободные линии (их число n св ), заявка занимает одну из них на время t p . В противном случае заявка находится в системе до момента t n , ожидая обслудивания. В т t чение времени ожидания некоторые линии могут освободиться (их число m ), и в этом случае будет возможность обслужить заявку. Если до момента времени t n ни одна из линий не освобождается (m =0 ), заявка получает отказ.

Будем считать, что в силу недостаточно высокой надежности системы, линии обслуживающие заявку, могут выходить из строя, тогда заявка получает отказ, а линия может быть отремонтирована и через промежуток времнеи t pem введена в строй.

Для исследования качества обслуживания заявок предусматривается N * кратное моделирование процесса функционирования системы в интервале (0, T ) . В процессе моделирования число обследованных реализаций обозначим через N .

Алгоритм:

1. Определяется момент t i поступления очередной заявки в систему.

2. Если t i < T , то переход на шаг 3, иначе – на шаг 11.

3. Проверка возможности обслужить поступившую заявку: если n св >0 , то переход на шаг 4, иначе – на шаг 12. (Значение времени поступления заявки t i сравнивается с t осв для всех линий, т.о. выявляются свободные линии.)

4.Если n св >1 , то переход на шаг 5, иначе – на шаг 6.

5. Выбирается номер свободной линии по специальным правилам.

6. Назначается выбранная линия.

7. Проверка: имеет ли место срыв обслуживания по причине недостаточной надежности? Если да, то переход на шаг 8, иначе – на шаг 10.

8. Определение времени t рем ремонта линии, вышедшей из строя (t рем имеет определенный закон распределения).

9. N отк = N отк +1 . Переход на шаг 1.

10. Определение времени занятости t з линии, которая назначена обслуживать заявку (некая случайная величина с определенным законом распределения) и времени освобождения линии: t осв = t i + t з . Переход к очередной заявке (шаг 1).

11. Проверка: если N < N * , то N = N +1 и переход на шаг 1, иначе – обработка результатов опыта и конец.

12. Определить:

А) времени t n пребывания заявки в системе;

Б) число освободившихся каналов m за время t n .

13. Если m >0 , то переход на шаг 14, иначе – на шаг 9.

14. Если m >1 , то переход на шаг 15, иначе – на шаг 6.

15. Выбирается определенная линия в соответствии с принятыми правилами и переход на шаг 6.