Судебные споры

Термический способ переноса изображения называется. Способы печатания методом термического переноса массы

Способ может быть использован для нанесения изображений на поверхность полотнища, имеющего неплоскую поверхность для печатания, поверхность с неравномерной теплопроводностью и поверхность, химически не согласованную с красителем. Способ состоит из этапов: предварительного подогрева первой поверхности полотнища с целью получения подогретого полотнища; размещения стороны ленты, содержащей краситель, против первой стороны нагретого полотнища в зоне соприкосновения; размещения термической печатающей головки в соприкосновении с указанной лентой со стороны, противоположной красителю; перемещения полотнища по отношению к указанной термической печатающей головке; и селективного локального приложения тепла и давления к ленте со стороны термической печатающей головки в зоне соприкосновения с целью переноса красителя с этой ленты на подогретое полотнище. Предложенный способ обеспечивает получение высококачественных изображений за счет улучшения проницаемости красителя через поверхность подложки и исключает образование пустот в напечатанном изображении. 8 з.п. ф-лы, 8 ил., 1 табл.

Настоящее изобретение относится к усовершенствованному способу печатания на различных подложках методом термического переноса массы, в частности, использующему предварительный подогрев подложки для компенсации неоднородностей теплопроводности и топографии поверхности и/или химической несогласованности.

Термин "термическое печатание" широко используется при описании нескольких различных семейств технологий нанесения изображений на подложку. В число таких технологий входят горячее тиснение, прямая термопечать, печатание с помощью диффузии красителя и печатание методом термического переноса массы.

Горячее тиснение выполняется механическим печатающим устройством, в котором изображение наносится или оттискивается на подложку через (красящую) ленту, как описано в патенте США №4992129 (Sasaki и др.). Изображение переносится на подложку путем нагрева штемпеля и приложения к нему давления. Вследствие этого окрашивающее вещество ленты, например краска или чернила, переносятся на подложку в том месте, куда был приложен штемпель. Перед нанесением изображения на подложку она может быть подогрета. Поскольку форма штемпеля фиксирована, метод горячего тиснения не обеспечивает простоты изменения наносимых на подложку знаков или изображений. Следовательно, метод горячего тиснения обычно оказывается бесполезным для печатания переменной информации, например для печатания номерных знаков для автомобилей.

Метод прямой термопечати широко применялся в первых образцах факсимильных аппаратов. Эти системы требовали применения специальных подложек, в состав которых входил краситель, благодаря чему бумага могла изменять свой цвет при локальном нагреве в заданных местах. При работе устройства подложка перемещалась поперек ряда узких индивидуальных нагревателей (пикселей), которые селективно нагревали (или не нагревали) подложку. Там, где пиксели нагревали подложку, подложка меняла свой цвет. Управляя нагревом пикселей, можно было сформировать на подложке любые изображения, например буквы или цифры. Однако подложка могла не предусмотренным образом менять свой цвет под действием света, тепла или механических нагрузок.

Печатание с помощью диффузии красителя использует для перемещения красителя физический процесс диффузии красителя от слоя, являющегося донором красителя, к получающей краситель подложке. Аналогично методу прямой термопечати здесь подложка и содержащая краситель лента перемещаются перед рядом узких индивидуальных нагревателей (пикселей), которые селективно нагревают ленту. Там, где пиксели нагревают ленту, краситель расплавляется и благодаря диффузии проникает в подложку. Известны некоторые красители, которые, попав на подложку благодаря диффузии, химически взаимодействуют с ней. Тогда цвет изображения может зависеть от хода химической реакции. В результате, если тепловой энергии оказалось недостаточно (мала температура или продолжительность нагрева), возможно неполное проявление плотности цвета. Поэтому проявление цвета после диффузии красителя часто сопровождают дополнительным этапом термического закрепления. В качестве альтернативы в патенте США №5553951 (Simpson и др.) описано использование одного или нескольких термостабилизированных валков, установленных до или после зоны печати, чем обеспечивается более точное регулирование температуры подложки в ходе процесса печатания.

Печатание методом термического переноса массы, известное так же как термическое печатание с переносом, бесконтактное печатание, термическое графическое печатание или термография, стало популярным и коммерчески эффективным для формирования знаков на подложках. Так же, как и в методе горячего тиснения, здесь для переноса изображения с ленты на подложку используются тепло и давление. Так же, как и в методах прямой термопечати и печатания с помощью диффузии красителя, здесь пиксельные нагреватели селективно нагревают ленту, чтобы перенести краситель на подложку. Однако краситель ленты, используемой для печатания методом термического переноса массы, содержит полимерное связующее, как правило, составленное на основе воска и/или смолы. Поэтому, когда пиксельный нагреватель нагревает ленту, масса воска и смолы переносится с ленты на подложку.

Одной из проблем, связанных с печатанием методом термического переноса массы, является задача создания высококачественных изображений на "неудобных" поверхностях, таких как неплоские или шероховатые поверхности, поверхности с неравномерной теплопроводностью или поверхности, состав которых химически не согласован со связующим красящего вещества.

На фиг.1 приведен пример подложки 20, которая одновременно имеет и шероховатую поверхность для печатания 22, и неравномерную теплопроводность. Световозвращающий слой 20 состоит из множества стеклянных бусинок 24, закрепленных на носителе 26 матрицей 28 из смолы/полимера. В изображенном исполнении световозвращающий слой 29 расположен между носителем 26 и матрицей 28 из смолы/полимера. Как правило, стеклянные бусинки 24 выступают из матрицы 28 из смолы/полимера примерно на 1...5 микрометров, образуя неплоскую шероховатую поверхность для печатания методом термического переноса массы.

Поскольку световозвращающий слой 20 выполнен не из единого однородного материала, теплопроводность разных точек его поверхности для печатания 22 может быть различной. Например, теплопроводность стеклянных бусинок 24 может отличаться от теплопроводности матрицы 28 из смолы/полимера. К тому же, на величину теплопроводности могут влиять неравномерность толщины носителя 26, пустоты в носителе 26 или местные скопления стеклянных бусинок 24 в световозвращающем слое 20. Вследствие этого создание изображения на поверхности для печатания 22 с использованием обычной технологии метода термического переноса массы может приводить к неравномерности толщины термически перенесенного слоя 23 и/или неравномерной адгезии точек (пикселей) красителя с соответствующим ухудшением качества печати.

На фиг.2 показан другой вариант подложки, имеющей поверхность для печатания 30 с переменной теплопроводностью. На фиг.2 изображен закрытый (капсулированный) световозвращающий слой 32. Его микросферы или бусинки 34 закреплены на носителе 36, но между ними размещен дополнительный отражающий слой 38. К носителю 36 на множестве выступающих опор 42 прикреплен защитный слой 40. Между защитным слоем 40 и микросферами 34 образуются зазоры 44. Поэтому в областях над зазорами 44 и в областях над выступающими опорами 42 теплопроводность поверхности для печатания 30 существенно различна. При использовании метода термического переноса массы, толщина и плотность слоя красителя 46 в местах расположения зазоров 44 и в местах расположения выступающих опор 42 обычно оказываются не одинаковыми.

На фиг.3 приведен пример закрытого (или капсулированного) световозвращающего слоя, в котором выступающие опоры образуют на поверхности для печатания гексагональную решетку. На фиг.3 видно, что сквозь напечатанное на световозвращающем слое изображение из-за неоднородности теплопроводности поверхности для печатания просвечивает гексагональная структура выступающих опор.

Патенты США №5818492 (Look) и №5,508,105 (Orensteen и др.) показывают, что печать методом термического переноса массы может быть выполнена на световозвращающих материалах в тех случаях, когда на них нанесен слой (или слои) полимерного покрытия. Хотя добавление полимерного слоя улучшает пригодность для печатания некоторых световозвращающих материалов, сам процесс нанесения такого слоя удорожает конечный продукт и может ухудшить его световозвращающие свойства. Но даже при наличии такого дополнительного слоя в некоторых графических применениях качество печати может оставаться неудовлетворительным. Добавление удобного для печатания слоя может изменить и другие характеристики световозвращающего материала, например его хрупкость.

В JP-A-05-270044 описан способ регистрации методом термического переноса массы, при котором изображение передается на воспринимающую поверхность путем нагревания промежуточного элемента термического переноса с помощью нагревателей для переноса изображения, причем воспринимающая поверхность предварительно подогревается в то время, когда нагреватели для переноса изображения нагревают промежуточный элемент термического переноса.

В JP-A-05-227977 описан способ переноса изображения, использующий замкнутую в кольцо промежуточную ленту, на одну из поверхностей которой нанесен слой прозрачного красителя, устройство для селективного нанесения изображения на окрашивающий слой, устройство, позволяющее привести окрашивающий слой промежуточной ленты в соприкосновение с воспринимающей поверхностью, и устройство для переноса красящего слоя на воспринимающую изображение поверхность путем прикладывания тепла и давления. Этот способ содержит этап предварительного подогрева промежуточной ленты перед приложением тепла и давления.

Наиболее распространенные способы улучшения качества печати при печатании на неудобных поверхностях методом термического переноса массы заключаются в увеличении тепловой энергии печатающей головки и в увеличении усилия, прикладываемого к печатающей головке опорным валиком. Однако увеличение тепловой энергии и давления на печатающую головку может приводить к сокращению срока ее службы, повреждениям ленты, снижению качества печати и росту механических нагрузок в системе. Таким образом, нужны способы и устройства для печатания методом термического переноса массы на подложках, поверхность которых шероховата, имеет неравномерную теплопроводность и/или выполнена из материала, непосредственно не согласованного с красителем ленты для печатания методом термического переноса массы.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способам и устройствам для предварительного нагрева подложки до заданной температуры, зависящей от характеристик конкретных типов подложки и красителя, которые будут использоваться, с целью улучшения качества печати при минимуме тепловой энергии печатающей головки и давления в устройствах для печатания методом термического переноса масс. Способы и устройства согласно настоящему изобретению расширяют список сочетаний материалов для термического переноса масс и материалов подложек, пригодных для использования печатания методом термического переноса масс. Предлагаемый способ пригоден для подложек, имеющих неплоскую поверхность для печатания, как у некапсулированных световозвращающих покрытий, неравномерную теплопроводность, как у капсулированных и некапсулированных световозвращающих покрытий, или поверхность, химически несогласованную со связующим красителя.

В одной из реализации настоящего изобретения устройство содержит нагреватель, закрепленный на шасси станка для печатания методом термического переноса массы перед (по ходу полотнища подложки) печатающей головкой. Когда полотнище движется, нагреватель излучает тепловую энергию на подложку, нагревая ее и делая ее более восприимчивой к печатаемому изображению. Предпочтительное устройство содержит расположенный поперек печатаемого полотнища неподвижный нагреватель, регулируемый отдельным устройством или тем же самым компьютером, который формирует изображение. Как правило, выходная мощность нагревателя поддерживается на минимальном уровне, необходимом для достижения оптимального качества печати. В устройствах, имеющих несколько печатающих головок, подобные нагреватели могут дополнительно устанавливаться перед каждой (по ходу полотнища подложки) печатающей головкой. Устройство может быть дополнительно оснащено излучающими нагревателями и подвижными тепловыми экранами, позволяющими циклически мгновенно включать и выключать подогрев. В одной из реализации тепловой экран выполнен в виде венецианских жалюзи, которые можно попеременно закрывать и открывать, периодически подставляя полотнище под излучение нагревателя.

В одной из реализации способ, состоящий в термическом переносе содержащего связующее вещество красителя с ленты на первую поверхность полотнища, имеющего неоднородную теплопроводность (теплоемкость), включает предварительный подогрев первой поверхности полотнища перед печатанием методом термического переноса массы. Содержащая краситель поверхность ленты располагается так, чтобы она соприкасалась с первой поверхностью полотнища. Термическая печатающая головка соприкасается со стороной ленты, противоположной стороне с красителем. Полотнище перемещается по отношению к термической печатающей головке. Печатание осуществляется путем селективного приложения тепла термической печатающей головки к отдельным местам на ленте и приложения давления в зоне соприкосновения, чтобы вызвать перенос красителя с ленты на подогретое полотнище.

В другой реализации настоящее изобретение включает в себя расположение множества термических печатающих головок в соприкосновении с обратными красителю сторонами соответствующего множества лент. В одной из реализации первая поверхность полотнища предварительно подогревается перед тем, как она войдет в каждое из своих соприкосновений с лентами. В одной из реализации со множеством печатающих головок на каждой из головок могут использоваться ленты различных цветов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет поперечное сечение изображения, созданного на стеклярусном световозвращающем материале посредством обычного печатания методом термического переноса массы.

Фиг.2 представляет поперечное сечение изображения, созданного на капсулированном стеклярусном световозвращающем материале посредством обычного печатания методом термического переноса массы.

Фиг.3 представляет изображение, созданное на капсулированном стеклярусном световозвращающем материале посредством обычного печатания методом термического переноса массы.

Фиг.4 представляет схематический чертеж станка для печатания методом термического переноса массы в соответствии с настоящим изобретением.

Фиг.5 представляет поперечное сечение незащищенного стеклярусного покрытия с изображением, созданным посредством печатания методом термического переноса массы способом согласно настоящему изобретению.

Фиг.6 представляет поперечное сечение капсулированного световозвращающего покрытия с изображением, созданным посредством печатания методом термического переноса массы способом согласно настоящему изобретению.

Фиг.7 представляет поперечное сечение другого варианта капсулированного световозвращающего покрытия с изображением, созданным посредством печатания методом термического переноса массы способом согласно настоящему изобретению.

Фиг.8 представляет пример изображения, созданного на капсулированном световозвращающем покрытии способом согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Красителем называется связующее вещество из воска или смолы, или из их сочетания, содержащее пигменты и/или чернила, способные создавать изображения или знаки на поверхности полотнища. Печатающим методом термического переноса массы называются такие процессы, которые обеспечивают перенос красителя с ленты на подложку путем одновременного локального приложения тепла и давления. Лентой называется тканый носитель, на одной из поверхностей которого находится краситель. Термином "химическая несогласованность" обычно обозначают недостаточную адгезию красителя, недостаточную проницаемость красителя через поверхность подложки и высыхание красителя в процессе печатания методом термического переноса массы, что увеличивает процент пустот в напечатанном изображении.

Фиг.4 является схематическим изображением станка 50 для печатания методом термического переноса массы согласно настоящему изобретению. Печатающая головка установлена так, что она касается первой стороны 68 движущегося полотнища 54, когда оно проходит через станок 50 для печатания методом термического переноса массы. Лента для термического переноса массы 56а в зоне соприкосновения 58а помещена между печатающей головкой 52а и движущимся полотнищем 54. В изображенной реализации лента для термического переноса массы 56а прижимается к печатающей головке 52а подающим роликом 60а и отводящим роликом 62а. Опорный валок 64а расположен на обратной стороне полотнища 54, чтобы поддерживать давление в зоне соприкосновения 58а.

Полотнище 54 перемещается в направлении 66 механизмом любой известной конструкции, например фрикционным механизмом с приводом от шагового двигателя. Печатающая головка 52а, которая остается неподвижной, находится в контакте с лентой для термического переноса массы 56а и передает краситель с ленты 56а на первую сторону 68 движущегося полотнища 54. Если перенос красителя завершен или не должен выполняться, печатающую головку 52а и ленту для термического переноса массы 56а можно, при желании, отодвинуть от движущегося полотнища 54 по направлению оси 70а.

Нагреватель 72 расположен перед (по ходу полотнища) печатающей головкой 52а. В показанной реализации нагревателем является горячий полый валок 73. Длина участка полотнища 54, огибающего горячий полый валок 73, может изменяться сообразно условиям применения. В некоторых реализациях горячий полый валок 73 для предотвращения прилипания полотнища 54 при повышенных температурах отполирован и/или имеет напыленное плазмой покрытие из тефлона®. Горячий полый валок 73 нагревается обычным электрическим трубчатым нагревателем, который остается неподвижным внутри вращающегося горячего полого валка 73. Горячий полый валок 73 может быть установлен на подшипниках, чтобы он свободно вращался при движении полотнища 54. В показанной реализации номинальная мощность нагревателя равна 2000 Вт или примерно 200 Вт на дюйм (79 Вт/см). В число альтернативных нагревателей входят конвективные нагреватели, ультрафиолетовые нагреватели, микроволновые генераторы, радиочастотные генераторы, нагревательные лампы и т.п.

Изображенный на фиг.4 станок 50 для печатания методом термического переноса массы содержит четыре печатающих головки 52а, 52b, 52с, 52d и связанных с ними структур. В одной из альтернативных реализаций дополнительные нагреватели 74b, 74с и 74d расположены (считая по ходу движения полотнища в направлении 66) перед термическими печатающими головками 52а, 52b, 52с и 52d. В изображенном исполнении добавочными нагревателями 72b, 72с, 72d служат нагревательные лампы. В исполнении, изображенном На фиг.4, на полотнище 54 могут наноситься знаки или изображения более чем одного цвета. При использовании лент для термического переноса массы черного, пурпурного, голубого и желтого цветов может быть обеспечена четырехцветная печать или печать составными цветами, если прозрачные красители, переносимые каждой из печатающих головок 52а, 52b, 52с и 52d, будут перекрывать друг друга.

Термические печатающие головки 52а, 52b, 52с и 52d функционируют, чтобы переносить дискретные порции красителя на первую сторону 68 полотнища 54. Размер площадки передаваемого красителя ("точки") определяется площадью каждого отдельного элемента печатающих головок. Такие точки обычно занимают около 0,006 квадратного миллиметра, что соответствует площади единичного пикселя. Разрешение знаков, нанесенных печатающими головками 52а, 52b, 52с и 52d, обычно составляет от примерно 75 до примерно 250 точек на линейный сантиметр.

Термином "термическая печатающая головка" обозначается устройство или устройства, в которых локально генерируется тепло для переноса красителя. Это локальное тепло может генерироваться резистивными элементами, контактирующими с лентой элементами лазерной системы, электронными элементами, термически управляемыми вентильными элементами, индукционными элементами, термостолбиками термоэлектрической батареи и т.п. В качестве примера печатающей головки, которая может быть использована в изображенном На фиг.4 станке 50 для печатания методом термического переноса массы, является печатающая головка, встраиваемая в аппарат, поставляемый фирмой Zebra Technologies Corp., Vernon Hills, IL под торговой маркой Model Z170. В лентах для печатания методом термического переноса массы 56а, 56b, 56с и 56d могут быть использованы связующие на основе воска, смолы или сочетаний смолы и воска. Для использования в изображенном на фиг.4 станке 50 для печатания методом термического переноса массы пригодны ленты, поставляемые фирмой Zebra Technologies Corp., Vernon Hills, IL под торговой маркой Zebra (модели 5030, 5099 и 5175). Такие ленты для печатания методом термического переноса массы, как правило, имеют полиэфирную подложку толщиной около 6 микрометров и слой красителя толщиной от приблизительно 0,5 микрометров до приблизительно 6,0 микрометров. Дополнительная информация, относящаяся к обычным технологиям печатания методом термического переноса массы, изложена в патентах США №5818492 (Look) и №4847237 (Vanderzanden).

На фиг.5 представлено в увеличенном масштабе поперечное сечение световозвращающего материала 20 по фиг.1, имеющее изображение 100, сформированное на неплоской поверхности 102 путем печатания методом термического переноса масс по способу и с помощью устройства согласно настоящему изобретению. Термин "неплоская поверхность для печатания" соответствует поверхностям с шероховатостью от не менее чем 1 микрометра до приблизительно 5 микрометров. Листовой капсулированный световозвращающий материал может иметь шероховатость от примерно 10 микрометров до примерно 15 микрометров. Световозвращающий материал 20 имеет также неоднородную структуру по вертикальной оси и пустоты в матрице 28 из смолы/полимера, которая прикрепляет бусинки к подложке 26. Как показано на фиг.1, полученный методом термического переноса массы слой, образующий изображение 100, имеет в целом неоднородную адгезию термически перенесенной массы к световозвращающему материалу 20.

Фиг.6 изображает вид сбоку на поперечное сечение капсулированного световозвращающего материала, имеющего поверхность для печатания 110. Сочетание выступающих опор 112 и зазоров 114 создает неравномерность теплопроводности и теплоемкости поверхности для печатания 110, измеренных вдоль оси, перпендикулярной поверхности для печатания 110. Предлагаемые способ и устройства для печатания методом термического переноса массы обеспечивают получение практически равномерного слоя 116, нанесенного методом термического переноса массы, несмотря на неравномерность теплопроводности.

Фиг.7 изображает вид сбоку на поперечное сечение капсулированного световозвращающего материала 120, у которого неплоская поверхность для печатания 122 имеет к тому же неравномерную теплопроводность. Как отмечалось выше, выступающие опоры 124 и зазоры 126 создают неравномерность теплопроводности поверхности для печатания 122. Нерегулярность поверхности, образованной кубическими уголковыми элементами 125, также вносит свой вклад в неравномерность теплопроводности. Кроме того, процесс наложения герметизирующей пленки 125 приводит к образованию на поверхности для печатания 122 вдавленных линий герметизации 130. Невзирая на эти два дополнительных неудобства, предлагаемые способ и устройства для печатания методом термического переноса массы обеспечивают получение на поверхности для печатания 122 практически равномерного слоя 132, нанесенного методом термического переноса массы.

На фиг.8 показан логотип, напечатанный на капсулированном световозвращающем материале с использованием способа и устройств согласно настоящему изобретению. В противовес результатам, показанным на фиг.3, предлагаемые способ и устройства обеспечили получение практически равномерного изображения несмотря на гексагональную структуру герметизирующих линий и соответствующую неравномерность теплопроводности.

Предлагаемые способ и устройства для печатания методом термического переноса массы могут использоваться для печатания буквенно-цифровых знаков, графических изображений, штрих-кодов и т.п. Полотнище может быть капсулированным или не капсулированным световозвращающим материалом, например материалом с кубическими уголковыми элементами, описанным в патентах США №№3684348, 4801193, 4895428 и 4938563; или стеклярусным линзовым материалом, содержащим открытые линзовые элементы, капсулированные линзы или вмонтированные линзы, как описано в патентах США №№2407680, 3190178, 4025159, 5064272 и 5066098.

ПРИМЕРЫ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

С помощью станка для печатания методом термического переноса массы, в целом аналогичного показанному На фиг.4, была приготовлена серия согласованных пар отпечатанных образцов с предварительным подогревом полотнища перед печатанием и без подогрева. Все образцы были отпечатаны методом термического переноса массы с помощью ленты сапфирно-голубого цвета марки DC300 для печатания методом термического переноса массы, поставляемой фирмой IIMAK Corp. of Amhurst, NY. У каждого образца определялся процент пустот в окончательном изображении. Полотнище проходило через станок с линейной скоростью около 7,62 сантиметра в секунду (3 дюйма в секунду). В процессе печатания использовались одни и те же изображения и одинаковая тепловая энергия. Для образцов с предварительным подогревом температура предварительного подогрева варьировалась от примерно 76,7С до примерно 93,4С (от 170F до 200F), как показано в таблице.

В качестве образцов А, В, I, J, О и Р использовался световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из пластифицированного термополимера поливинилхлорид-винилацетат-винилалкоголь. Для образцов С и D был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 4770А фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из поперечно-связанного алифатического уретана. Для образцов Е и F был использован световозвращающий материал для автомобильных регистрационных номеров High Intensity Grade марки Scotchlite Series 3870 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с акриловым покрытием. Для образцов G и Н был использован световозвращающий материал для автомобильных регистрационных номеров Diamond Grade марки Scotchlite Series 3970 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с акриловым покрытием. Для образцов К и L был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с незащищенной поверхностью из поливинилбутираля и незащищенными стеклянными бусинками. Для образцов М и N был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из поперечно-связанного алифатического уретана. Для образцов Q и R был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из алифатического полиэстеруретана. Для образцов S и Т был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 4770A фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из экструдированного сополимера этилена и акриловой кислоты.

Использование способов и устройств согласно настоящему изобретению для предварительного подогрева полотнища привело к сокращению количества пустот в окончательном изображении в интервале от 55% до 95,6%. Наиболее впечатляющее видимое изменение качества изображения произошло с образцами Е и F. Образцы С и D оказались, вероятно, самым неудобным материалом для печатания методом термического переноса массы из-за химической несогласованности полотнища и термически переносимого вещества ленты. Предварительный подогрев полотнища привел к сокращению на 78,8% количества пустот в окончательном изображении. Использованный для образцов К и L материал с незащищенными линзами имел самую большую шероховатость. Предварительный подогрев привел к сокращению количества пустот в окончательном изображении приблизительно на 60%.

Хотя некоторые воплощения настоящего изобретения остались не описанными для знакомых с этой областью техники очевидно, что в них могут быть сделаны различные изменения и модификации, не отклоняющиеся от изложенной выше концепции изобретения. Поэтому объем настоящего изобретения не может быть ограничен структурами, описанными в этом тексте, а лишь только структурами, описанными языком формулы изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ печатания методом термического переноса массы красителя с ленты на первую поверхность полотнища, состоящий из этапов предварительного подогрева указанной первой поверхности этого полотнища с целью получения подогретого полотнища, причем эта первая поверхность представляет собой (исключительно или в любом сочетании) неплоскую поверхность, поверхность с неравномерной теплопроводностью и поверхность, химически не согласованную с красителем; размещения стороны ленты, содержащей указанный краситель, напротив первой стороны указанного нагретого полотнища в зоне соприкосновения; размещения термической печатающей головки в соприкосновении с указанной лентой со стороны, противоположной указанному красителю; перемещения указанного полотнища к указанной термической печатающей головке и селективного локального приложения тепла и давления к указанной ленте со стороны указанной термической печатающей головки в указанной зоне соприкосновения с целью переноса указанного красителя с этой ленты на указанное подогретое полотнище.

2. Способ по п.1, отличающийся тем, что указанное полотнище представляет собой незащищенный световозвращающий материал.

3. Способ по п.1, отличающийся тем, что содержит этап перемещения указанного полотнища перед неподвижной термической печатающей головкой.

4. Способ по п.1, отличающийся тем, что содержит этап размещения множества термических печатающих головок в соответствующем множестве зон соприкосновения.

5. Способ по п.1, отличающийся тем, что содержит этапы размещения множества термических печатающих головок в соответствующем множестве зон соприкосновения и подогрева указанной первой поверхности указанного полотнища перед проходом этого полотнища каждой из множества зон соприкосновения.

6. Способ по п.1, отличающийся тем, что содержит этапы перемещения указанного полотнища перед множеством неподвижных термических печатающих головок и размещения источников тепла перед (по ходу полотнища) каждой из термических печатающих головок.

7. Способ по п.1, отличающийся тем, что содержит этап размещения поверхностей множества содержащих краситель лент напротив первой стороны указанного нагретого полотнища во множестве соответствующих зон соприкосновения, образованных множеством соответствующих термических печатающих головок.

8. Способ по п.7, отличающийся тем, что две или более лент содержат красители разных цветов.

9. Способ по п.1, отличающийся тем, что указанное полотнище представляет собой капсулированный световозвращающий материал.

Что такое сублимационный термоперенос?

Сублимационный термоперенос используется для печати изображений на струйном принтере на специальной бумаге. Изображение печатается в зеркальном отображении. После того, как чернила полностью высохнут, изображение, и заготовка для термопереноса помещаются в специальный прибор – термопресс – где под воздействием высокой температуры и давления происходит сублимационный термоперенос рисунка с бумаги на поверхность материала.

Для печати изображений методом сублимационного термопереноса следует использовать специальные чернила, в составе которых содержатся дисперсные красители. Такие красители под воздействием высоких температур переходят из твердого состояния в газообразное, т.е. сублимируются. Как правило, сублимационные красители могут использоваться для печати на полиэфирных материалах. Однако отличное качество изображения получается при печати и на смесовых тканях, в составе которых содержится не меньше 60 % полиэфира. Печать изображений методом сублимационного переноса возможна также на керамике, металле, стекле, если на их поверхности нанесено специальное покрытие из полиэфира.

Не следует путать сублимационный перенос с обыкновенным горячим/холодным переносом, когда печать изображений производится на специальной трансферной бумаге, имеющей полимерное покрытие, и обычными чернилами для струйных принтеров. Такое полимерное покрытие после завершения процесса печати переходит вместе с изображением на поверхность материала и фиксирует изображение, в некоторой мере защищая его от внешних воздействий. Но отпечатки, нанесенные методом холодного/горячего переноса менее устойчивы, чем сублимационные.

Из чего состоят сублимационные чернила?

Сублимационные дисперсные чернила – водная среда, содержащая специальные сублимационные красители. Эти красители являются диспергированными и практически не растворяются. Когда происходит термоперенос, молекулы красителей переходят в газообразное состояние и сорбируются волокном, после чего диффундируют в его поверхность, что приводит к возникновению в полимере твердого раствора. Нанесенное таким образом изображение отличается высокой светостойкостью и устойчиво к внешним воздействиям и влаге. Сублимационные красители были разработаны, прежде всего, для окраски ацетилцеллюлозного волокна. Сегодня чернила для сублимации – единственное средство для окраски полиэфирных, полиамидных и ацетатных материалов.

Прямая печать сублимационными чернилами

Прямая печать на ткани без использования бумаги как промежуточного носителя возможна в том случае, если ткань прошла обработку предпечатного и финишного типов.

Зачем использовать в качестве промежуточного носителя специальную бумагу для сублимации вместо стандартной бумаги для струйных принтеров?

Термотрансферная бумага для сублимационного переноса отличается от стандартных InkJet-носителей наличием специального покрытия. Это покрытие не только обеспечивает четкость изображения при печати, но и полностью "отдает" краситель при термопереносе. Способность полностью "отдавать" чернила – главное отличие бумаги для сублимации от бумаги для струйной печати или обычной без покрытия.

Какие качества должна иметь трансферная бумага?

Бумага для термопереноса должна обладать следующими свойствами:

Гладкая и однородная поверхность;
. устойчивость к интенсивной заливке чернилами;
. высокое качество печати тонких линий и мелких деталей, высокое разрешение и насыщенность изображений, четкие контуры и хорошая цветопередача;
. минимальная деформация в процессе печати и после высыхания отпечатка;
. экономичность расхода и быстрое высыхание чернил;
. достаточная плотность, чтобы частицы красителя не проникали в массу бумаги;
. получение высококачественного термопереноса вследствие максимального выхода красителей;
. должна быть пригодна для применения на всех используемых для сублимации устройствах.

Что делать, в случае если, при выполнении печати с интенсивной заливкой, бумага начинает коробиться, при соприкосновении с печатающей головкой?

Прежде всего, следует заметить, что данное явление, когда при печати бумага начинает коробиться, является характерным при печати сублимационными чернилами. Чтобы уменьшить деформацию и избежать контакта бумаги и печатающей головки, придерживайтесь следующих рекомендаций:

  1. используйте уровень заливки чернилами, который необходим для достижения требуемой цветовой насыщенности, при этом следует иметь в виду, что высокое качество термопереноса с сублимационной бумаги получается при использовании меньшего количества чернил, чем при стандартной бумаге;

  2. увеличьте расстояние между бумагой и печатающей головкой;

  3. наряду с основными стандартными направляющими, удерживающими края бумаги, используйте магнитные направляющие. Тем самым вы обеспечите дополнительный прижим бумаги, и ее края не будут подниматься;

  4. прикрепите к нижнему или боковым краям бумаги небольшой груз, чтобы создать слабое натяжение бумаги;

  5. ускорить высыхание чернил и избежать коробления бумаги и возможного прилипания отпечатков при ее намотке можно используя обогреватель с шириной, которая будет больше, чем ширина бумаги.

Возможно ли нанесение изображений методом сублимационного переноса на поверхность, состоящую из 100% хлопка?

Для сублимационной печати используются дисперсные красители, которые обеспечивают высокое качество изображений только на полиэфирных, полиамидных и смесовых материалах. Нанесенные таким способом изображения отличаются высокой устойчивостью к стирке и воздействию ультрафиолетового излучения. Сублимационная печать на хлопковом материале не даст желаемый результат, поскольку требуемая связь сублимационных красителей к хлопковой поверхности отсутствует. Для печати на хлопковых и других натуральных тканях лучше всего использовать пигментные и активные чернила.

Какие условия являются оптимальными для сублимационного термопереноса?

На качество получаемого отпечатка влияют:

Температура,
. время переноса.

Как правило, при печати на текстиле используется температура 180-210 °C и время 30-60 секунд. Для других материалов эти параметры необходимо заранее установить опытным путем. Следует иметь в виду, что при повышении температуры и времени воздействия сублимация красителя происходит более интенсивно, а выход с промежуточного носителя повышается.

Нужна ли окончательная обработка полученного отпечатка после сублимационного термопереноса?

В отличие от прямой печати по полиэфирным материалам, трансферная технология не требует никакой финальной обработки отпечатанного изображения.

Закрепление состоит в переводе порошка в состояние вязкой жидкости, образующей при затвердевании пленку, имеющую хорошее сцепление с бумагой. Сделать это можно несколькими способами.

    Растворение порошка в парах растворителей (ацетона, четыреххлористого углерода, уайт-спирита), испаряющихся с пропитанных растворителем пористых подушек, находящихся в узких наклонных кюветах. Полимер тонера поглощает растворитель, набухает и, растекаясь, образует жидкую пленку. Теряя растворитель на воздухе, пленка быстро высыхает. Время нахождения копии в парах - 3-10 с. Дольше выдерживать не стоит из-за растекания тонера и искажения штрихов.

    Получается изображение с хорошими репродукционными характеристиками. Когда-то этот способ был широко распространен, но сейчас на практике не применяется, так как органические растворители опасны для здоровья операторов.

    Расплавление смолы, входящей в тонер, с образованием пленки. Этот процесс лежит в основе термических методов закрепления. Самый известный из них - термосиловой (термомеханический) метод. В некоторых инженерных копировальных аппаратах используют бесконтактное термическое закрепление.

Бесконтактное термическое закрепление изображения

Закрепление изображения может производиться с помощью потока теплового ИК-излучения.

Примером служит батарея из нескольких трубчатых тепловых излучателей (рис. 3.3
). Излучатели - кварцевые трубки с размещенной внутри нихромовой спиралью. На рис. 3.3
показана трубка диаметром 10 мм, толщиной стенки 1 мм, нихромовой спиралью мощностью 600 Вт. Длина трубки превышает ширину закрепляемого изображения на удвоенный размер зоны резкого возрастания величины теплового потока. Интенсивность теплового излучения равномерна вдоль оси лампы только в ее средней части. По краям, на расстоянии около 20 мм, поток сильно изменяется. Эти зоны неравномерного нагрева должны находиться за пределами копии. Мощность лампы можно регулировать, изменяя подаваемое на нее напряжение. На рис. 3.3,б
представлена система из двух ламп с отражателем из полированного алюминия 1. Расстояние между лампами a изменяется в зависимости от скорости движения копии. При скорости движения бумаги 2,2 м/мин (7 копий А4 в минуту) a = 40 мм, расстояние до отражателя h 1 = 5 мм, а расстояние от ламп до копии h = 5-8 мм.

Нагрев копии определяется способностью тонерного изображения и бумаги поглощать инфракрасное (тепловое) излучение. Если источником излучения служит импульсная ксеноновая лампа или лампа накаливания с мощным ИК-излучением, мало поглощаемым бумагой (10-15%), то происходит в основном нагрев частиц тонера. Черный тонер поглощает ИК-излучение практически полностью и быстро разогревается до температуры около 160°С. Такое излучение не вызывает тепловой деформации бумаги, так как ею почти не поглощается, что снижает опасность ее застревания в аппарате.

Термосиловой метод закрепления

При термосиловом закреплении копия с тонерным (порошковым) изображением проходит между двумя разогретыми валиками, прижатыми друг к другу (рис. 3.4
). Валики выполняют различные функции.

Прижимной валик 1 прижимает копию лицевой стороной к нагревательному валику (его часто называют фьюзерным) 2. За счет упругой деформации прижимного валика происходят прижим копии под давлением 0,3-0,6 кг/см 2 и изгибание бумаги в зоне контакта в сторону нагревательного валика, что увеличивает площадь контакта.

Нагревательный валик разогревает порошковое изображение до 140-180°С. Тонер оплавляется, и полученная пленка прижимается к бумаге. Время закрепления - 1-2 с.

Фьюзерный валик - полая металлическая (например, стальная) трубка, покрытая слоем тефлона толщиной 40-200 мкм. Этот слой играет роль антипригарного покрытия. Внутри цилиндра размещен нагревательный элемент - галогенная лампа накаливания в форме длинной трубки. Длина трубки превышает ширину максимально допустимого в данном аппарате формата (например, А4) на 30 см с учетом неравномерности нагрева по краям валика.

Прижимной валик - алюминиевый цилиндр, покрытый 10-миллиметровым слоем термостойкой резины, имеющий диаметр и длину одинаковые с фьюзерным валиком.

Копия проходит через закрепляющее устройство (рис. 3.5
), обращенная тонерным изображением в сторону фьюзерного валика, и прижимается к нему вторым валиком. Так как часть тонера может налипнуть на фьюзерный валик, несмотря на исключительно низкие адгезионные свойства тефлона, предусмотрена смазка валика фьюзерным маслом (антипригарной жидкостью). Для этой цели служит специальный узел смазки. Кроме того, в устройстве есть механизм отделения бумаги от валика.

Чтобы обеспечить оплавление порошка, но не допустить вредного перегрева копии, устройство термосилового закрепления снабжено датчиком температуры и термопредохранителем для аварийного отключения нагревательного валика.

Расчет процесса закрепления изображения

Изображение, поступающее в устройство термозакрепления, состоит из частиц тонера, которые должны быть нагреты до температуры, достаточной для закрепления. Для расчета процесса В.Х.Сасом предложена следующая модель.

Представим изображение в виде отдельно лежащих частиц тонера, имеющих форму шариков. Это дает возможность представить закрепление как процесс нагрева отдельной частицы тонера до температуры закрепления. Шарик контактирует с воздухом и бумагой. Примем, что температура воздуха в закрепляющем устройстве вблизи копии равна температуре бумаги. Нагрев проводится излучателями, размещенными по обе стороны копии, и их излучение одинаково.

В основу расчета положены дифференциальные уравнения теплового баланса для частицы тонера и единицы площади бумаги. Уравниваются мощность поглощенной тепловой энергии, с одной стороны, и нагревание частицы и рассеяние поглощенного тепла в окружающее пространство, с другой стороны. Уравнение теплового баланса для частицы тонера выглядит так:

где q - удельная мощность теплового потока, подаваемого закрепляемому изображению со стороны тонерного изображения, Вт/м 2 ;

A т - коэффициент поглощения излучения тонером;

S - площадь проекции частицы тонера, S = πd2/4, м 2 , где d - диаметр частицы, м;

t - время нагревания. с;

Масса частицы тонера г;

γ - удельная масса тонера, г/м 3 ;

с т - удельная массовая теплоемкость материала тонера, Дж/(г×град);

S 1 - площадь поверхности частицы м 2 ;

T - температура, до которой нагрета частица, К;

T" в - температура воздуха вблизи частицы, К;

α - коэффициент теплоотдачи, Вт×м -2 ×град -1 ; α = 2λ/d, где

λ - коэффициент теплопроводности воздуха, Вт×м -1 ×град -1 .

Скорость воздуха относительно частиц тонера принята за нуль. Температура воздуха вблизи изображения равна температуре бумаги Т б.

Температуру бумаги получают, решив дифференциальное уравнение теплового баланса для бумаги, отнесенного к единице ее площади. Градиент температуры по толщине бумаги принят за нуль.

Коэффициент поглощения излучения бумагой равен А б, а если облучение идет с двух сторон, то суммарный коэффициент, К = 2А б.

Уравнение теплового баланса представлено следующей формулой:

где γ б - масса единицы площади бумаги, г/м 2 ;

c б - удельная массовая теплоемкость бумаги; Дж/(г×град);

T B - температура воздуха в закрепляющем устройстве, К.

В результате решения этого уравнения получено выражение

где

T 0 - начальная температура бумаги.

Величина Dt в реальных условиях мала, и поэтому при разложении в степенной ряд ограничиваются первыми двумя членами ряда. Получим выражение для температуры бумаги

Это выражение подставим в уравнение теплового баланса .

Решив уравнение , получим уравнение процесса термического закрепления (для t ≥ 0,05 с):

При закреплении изображения рассматриваемым способом частицы различных размеров нагреваются до разных температур. Чем меньше размер частицы, тем ниже ее температура. Процесс закрепления практически реализуется, если все элементы изображения достигнут температуры плавления тонера. Необходимую для этого температуру назовем T 3 (температура закрепления). Однако при этом никакой произвольно выбранный элемент изображения не должен нагреваться до температуры T i , превышающей предельно допустимую температуру Т пр, иначе копия будет повреждена. Это условие можно записать так:

Время закрепления определяется по плавлению частиц наименьших размеров. Для этих частиц величина M имеет наименьшее значение: M = M min .

Минимально допустимое время закрепления при заданной удельной мощности нагревательного устройства q получают из формулы , заменив T на T 3 , M на M min , t на t 3 , и решив уравнение относительно времени закрепления t 3:

Минимально возможное время закрепления получим, повысив мощность нагревательного устройства до критической величины q k . Это наибольшая величина q, при которой соблюдается условие , то есть нет опасности повреждения копии из-за перегревания.

Из формулы видно, что помимо свойств тонера (T 3 и M min) на процесс закрепления влияют удельная мощность закрепляющего устройства и свойства бумаги: теплоемкость (c б) и теплоотдача (α б, входящие в константы N и S) () Время закрепления увеличивается с возрастанием теплоемкости и уменьшением теплоотдачи бумаги.

Перенос изображения в цветных копировальных аппаратах

При получении цветных изображений производится накопление изображения, перенос его на приемную подложку и термозакрепление полноцветного изображения.

Принципиально можно представить три технологические схемы.

Второй вариант заключается в прохождении бумаги через 4 или 8 секций печати, в которых на нее последовательно печатаются 4 однокрасочных изображения с одной или с двух сторон. При этом способе скорость получения цветного изображения высока и почти не отличается от скорости черно-белого процесса. Этот способ используют в высокоскоростных копировальных аппаратах и цифровых печатных машинах. Полученная копия проходит термическое закрепление.

Основным термическим способом закрепления цветных изображений является термосиловой.

Одноклассники

Сублимационный принтер превращает электронные изображения в отпечатки высокого качества. Он работает на уникальных твёрдых чернилах, которые в процессе печати превращаются в газ, минуя жидкую фазу. Переход чернил из твёрдого состояния в газообразное становится возможным благодаря тысячам микроскопических нагревателей, встроенными в печатающую головку принтера. Серьёзный химический процесс возгонки чернил получил название «сублимации», он используется для получения высококачественных фотографических отпечатков.

Как устроен сублимационный принтер с технологией прямого переноса изображений? Его главными составляющими являются микропроцессор, печатающая головка, нагреватели (термоэлементы), картриджи с чернилами.

Микропроцессор

Микропроцессор выполняет функцию «мозга» сублимационного принтера. Он контролирует всё и вся, начиная от подачи бумаги в печатающее устройство, и заканчивая выводом готового изображения в приёмный лоток.

Когда принтер получает задание печати, микропроцессор разбивает его на три основных цвета: голубой, пурпурный и жёлтый, в соответствии с цветами сублимационной ленты, которая находится в картридже.

Кроме того, микропроцессор сообщает нагревателям, в какой момент и с какой силой нужно разогревать чернила, а в какой момент уменьшать или прекращать нагрев.

Печатающая головка

Прежде, чем перенести цветные чернила на бумагу, печатающей головке предстоит проделать сложную работу, и перевести твёрдые чернила в газообразное состояние.

Печатающая головка сублимационного принтера

Сублимационная печатающая головка состоит из нескольких тысяч микроскопических термоэлементов, которые по указанию микропроцессора разогревают сублимационную ленту с чернилами.

Нагреватели

Нагреватели, расположенные на печатающей головке сублимационного принтера, имеют поистине микроскопические размеры. По сигналу микропроцессора они включают один из 256 режимов разогрева для каждого из цветов.

Нагреватели сублимационного принтера

Чем сильнее разогревается термоэлемент, тем сильнее он нагревает чернила, и тем больше красителей испаряется с цветной сублимационной ленты и переходит на носитель. Следовательно, от температуры нагрева термоэлементов зависит насыщенность изображения и плотность заливки.

Чернила

В сублимационной печати используются уникальные твёрдые чернила , которые при разогреве не превращаются в жидкость, как большинство твёрдых чернил, а приобретают газообразную форму. Чтобы с сублимационной ленты отделилось цветное облачко красителей, её необходимо разогреть до температуры 200оС.

Как и все молекулы, молекулы сублимационных чернил взаимодействуют друг с другом. При этом сила их отталкивания друг от друга уравновешивается силой притяжения, за счёт которой сохраняется твёрдая структура красителей. В момент, когда чернилам передаётся тепловая энергия термоэлементов, их молекулы начинают колебаться активнее, нарушаются межмолекулярные связи, и молекулы начинают вырываться из общей массы, формируя лёгкое цветное облачко красителей. Чем сильнее разогреваются чернила, тем активнее колеблются их молекулы, и тем насыщеннее чернильное облачко, выделяемое сублимационной лентой.

Сублимационная лента

Чернильное облачко просачивается на бумагу, поверхность которой не нагревается и имеет комнатную температуру. Когда разогретые газообразные чернила попадают на поверхность бумаги, они отдают ей своё тепло. Теряя тепло, молекулы возвращаются в первоначальное состояние, обретая новые межмолекулярные связи. Только на этот раз они твердеют не на сублимационной ленте, а на бумаге, формируя красочное изображение.

Картриджи

Ленты сублимационных чернил помещаются в пластиковые картриджи с двумя встроенными бобинами: подающей и принимающей. В монохромные принтеры устанавливаются картриджи с чёрными сублимационными лентами, а в полноцветные картриджи – ленты с цветными сегментами, соединёнными между собой в длинную полосу. На рисунке отчётливо видно, как внутри сублимационного картриджа располагается цветная красящая лента.

Сублимационный картридж с цветной лентой

Сублимационные картриджи изготавливаются из плотного пластика. По своим физико-химическим свойствам они схожи с лазерными и струйными картриджами, отличает их только уникальная конструкция.

Установка картриджа с сублимационной лентой в принтер

В настоящее время в сублимационные картриджи заправляется не только четырёхцветная лента CMYK (голубая, пурпурная, жёлтая и чёрная), но и зелёная, красная, белая, синяя, золотая, серебряная и т.д. В некоторых сублимационных картриджах можно встретить ленту с дополнительным тонким ламинирующим слоем, предназначенным для защиты изображения, и даже ленту со стирающим покрытием.

Картридж с красящей лентой отдаёт носителю свои чернила последовательно: сначала на бумагу наносятся жёлтые красители, затем пурпурные и, наконец, голубые. В результате за три прохода носителя по печатному тракту формируется полноцветное изображение.

Способность инфракрасных лучей эффективно преобразовы­вать энергию оптического излучения в тепловую эффективно ис­пользуется для целей термографии - особого способа регистра­ции изображений, производимого локальной тепловой реакцией в местах нагревания термографического материала. Разработка данного способа относится к 1950-1952 гг., в ее результате был предложен прямой и косвенный способ.

Термографическая бумага для получения копий пропитана ве­ществом, химический состав и цвет которого необратимо изменяются при нагревании. Поскольку темные участки оригинала поглощают больше энергии излучения, чем светлые области, термографиче­ская бумага при контакте с темными участками оригинала сильнее нагревается и изменяет цвет, образуя позитивное изображение. В рассмотренном процессе фотоны взаимодействуют не с атомами фоточувствительной среды, а с агрегатными скоплениями атомов. Фиксирование изображения не требуется, хотя при длительном хранении, особенно в местах с повышенной температурой воздуха, потемнение термографической бумаги происходит по всей поверх­ности.

Термопринтеры. К ним относятся принтеры с термопереносом и термосублимационные принтеры. Все они при работе используют нагрев.

Работа термопринтеров основана на взаимодействии специаль­ной бумаги, которая темнеет при нагревании, и печатающей голов­ки с нагревательными элементами. В процессе печати цветных изображений для переноса красителя на бумагу используется не удар, а точечный нагрев красящей ленты.

Принцип действия термопринтера очень прост. Печатающий элемент представляет собой панель с нагреваемыми элементами. В зависимости от подаваемого напряжения нагреваются те или иные элементы, которые заставляют темнеть специальную термо­бумагу в месте нагрева. Достоинством данного типа принтеров не-


сомненно служит то, что им не нужны расходные материалы кроме специальной бумаги. Недостатком является малая скорость печати.

Широкое практическое применение способ термографии полу­чил в контрольно-кассовых машинах.

В термосублимационных принтерах (термосублимация - про­цесс перехода вещества из твердого состояния в газообразное, минуя жидкое состояние) краситель с поверхности красящей ленты переносится на бумагу. При перемешивании паров красителей раз­личного цвета достигается очень качественная цветовая гамма (фотореалистичный режим печати).

Общий принцип действия термосублимационных печатающих устройств заключается в следующем.

В печатающей головке используется керамическая подложка с резисторами, напряжение на которых регулируется микросхемой. Подложка имеет твердое покрытие из оксида кремния или напыле­ние, идентичное алмазному.


Материал для переноса красителя на бумагу состоит из тонкого прозрачного пластика, покрытого тонким слоем воска, полимера или композиционным материалом, представляющим собой сочета­ние воска и полимера. Этот слой входит в непосредственный кон­такт с бумагой. При подаче напряжения на резистор происходит его нагрев, в результате чего воск или полимер переносится на бумагу. Воск требует меньшей степени нагрева, полимер большей.

После переноса воска пластиковая подложка отделяется от бу­маги, оставляя воск на ней. Этот процесс вызывает сильную заряд­ку бумаги статическим электричеством, и иногда используется спе­циальное оборудование для снятия статики. Другой проблемой является то, что головка сильно перегревается, поэтому для ее ох­лаждения используют специальные алюминиевые радиаторы.

От типа материала, применяемого для переноса красителя, за­висит долговечность изображения. Воск стирается, быстро выцве­тает, в то время как полимерные покрытия даже в сочетании с вос­ком достаточно надежны. Одним из достоинств термопереноса является влагостойкость материала.

При цветной печати производится несколько проходов с различ­ными лентами воска (CMYK-модель), в результате чего формиру­ется полутоновое растровое изображение. Некоторые принтеры позволяют делать точки разных размеров. На таких принтерах ус­тановлена печатающая головка с хорошим охлаждением и очень четкой регулировкой времени и степени нагрева каждой точки, что


позволяет воску растекаться по бумаге. Эта технология дает более плотную заливку на больших площадях.

В настоящее время используют несколько видов сублимацион­ного переноса красителя.

Сублимация красителя (Dye Sublimation). При таком методе краситель переносится с ленты при ее нагревании термоголовкой, которая обеспечивает различные температурные режимы. В зави­симости от температуры происходит перенос большего или мень­шего количества красителя, в результате чего образуются различ­ные оттенки цвета. Такой способ сублимации является наиболее медленным. Изображения, напечатанные таким способом, могут быть подвергнуты вторичному переносу с помощью нагрева. Для печати используется специальная бумага с покрытием, в котором собственно и оседают сублимирующиеся красители.

Термовосковой перенос (Wax Thermal Transfer), При термовос­ковом переносе диапазон рабочих температур несколько ниже, чем в предыдущем случае. "Расплавленный воск, нанесенный на ленту, стекает и застывает на бумаге. Такой способ позволяет увеличить скорость печати, однако технология дает наилучшие результаты при значительном размере деталей изображения, заполняемых одним цветом. При печати полноцветных рисунков становится явно виден растр, как на струйных принтерах с низким разрешением.

Термовосковая гибридная сублимация (ТГС) (Wax Thermal Hybrid Sublimation) - это сочетание воскового переноса и субли­мации красителя. Этот способ также называется настоящей или отложенной сублимацией.

Термоголовка используется для переноса красителя, находяще­гося в восковом носителе. Низкая температура термовоскового процесса переносит частицы красителя на бумагу, но не позволяет ему сублимироваться. Такая технология ориентирована в первую очередь на повторный перенос, т. е. отпечаток переносится на дру­гую поверхность. Для переноса используется термопресс, который расплавляет воск и одновременно позволяет красителю сублими­роваться на поверхность. Технология, разработанная фирмой Sawgrass Systems позволяет получить наилучший результат при повторном переносе, поскольку сублимация красителя на материал с бумаги происходит только при повторном переносе.

Термический перенос сухой смолы (ТПСС) (Thermal Dry Resin Sublimation) аналогичен сублимации красителя. Но вместо того, чтобы переносить одну точку с ленты на бумагу, ТПСС принтеры превращают специальную обезвоженную смолу в пар. Специально


изготовленная бумага абсорбирует газообразный краситель. В ре­зультате получаются отличные оттенки практически без растра. Такие принтеры идеально подходят для печати фотографий. Этот способ печати в основном относится к принтерам ALPS, которые, однако, используют и сублимацию красителя. Принтеры позволяют производить печатать на различных материалах, используя раз­личные красители, включая металлические.

Твердочернильные технологии (Solid Ink Printers) реализованы фирмой Tektronix (серия Tektronix 840-850). Красители здесь пред­ставляют собой твердые частицы красителя CMYK. Частички кра­сителя каждого цвета находится в собственном отделении кар­триджа. Чернила расплавляются и подаются в печатающую головку. Она создает изображение на алюминиевом барабане, с которого и переносится на бумагу. Для того чтобы чернила не за­стывали на барабане, их подогревают. Ширина печатающей голов­ки равна ширине листа. Лист движется относительно головки, кото­рая переносит на него краситель. Наиболее интересной в данном принтере является сама печатающая головка. Печатающая головка представляет собой блок сопел (по 112 на каждый цвет), снабжен­ных пьезоэлементами. При срабатывании пьезоэлемента капля расплавленных чернил попадает на барабан. Скорость печати в цвете доходит до 14 страниц в минуту. Принтер не рекомендуется выключать из сети, поскольку при этом забиваются сопла печа­тающей головки.

К сожалению все сублимационные технологии требуют присут­ствия прецизионной головки. Поэтому такие принтеры стоят доста­точно дорого и не получили при современном уровне развития пе­чатных технологий должного развития. Они рассчитаны на полноцветную печать высокого качества.

Кроме описанных способов термографии известен также элек­тротермографический. В его основе лежит явление спада по­верхностных зарядов при нагревании термографического слоя. Для этого применяются вещества, чувствительные к нагреву, а именно: смолы в виде слоев на бумажной подложке. Сам процесс спада зарядов вызван сильным уменьшением удельного сопротивления смол при повышении температуры. После коронного заряда и на­гревания термографического слоя ИК- излучением, вызывающим снижение удельного сопротивления до низкого уровня, будет про­исходить быстрый спад поверхностного заряда на экспонирован­ных участках. После процесса экспонирования копию со скрытым электростатическим изображением подвергают электрографиче-


скому проявлению, которое образует видимое негативное изоора-жение.

Электротермографические копии по контрасту сравнимы с элек­трофотографическими, однако этот способ значительно уступает последнему по разрешающей способности.