Поиск работы

Самый долговечный металл. Самый прочный металл: какой он

Многих любителей интересных фактов интересует вопрос, какой металл самый твердый? И навскидку ответить на этот вопрос будет непросто. Конечно, любой учитель химии без труда скажет правильно, даже не задумываясь. Но среди рядовых граждан, которые последний раз занимались химией в школе, не многие смогут правильно и быстро дать ответ. Это связано с тем, что все с детства привыкли делать разнообразные игрушки из проволоки и хорошо запомнили, что медь и алюминий мягкие и хорошо поддаются сгибанию, а вот стали наоборот не так просто придать желаемую форму. С тремя названными металлами человек имеет дело чаще всего, поэтому остальные кандидатуры даже не рассматривает. Но сталь, конечно же, не является самым твердым металлом в мире. Справедливости ради стоит отметить, что это вообще не металл в химическом смысле, а соединение железа с углеродом.

Что такое титан?

Самым твердым металлом является титан. Впервые чистый титан был получен в 1925 году. Это открытие произвело фурор в научных кругах. На новый материал сразу же обратили внимание промышленники и по достоинству оценили преимущества от его использования. По официальной версии, самый твердый металл на Земле получил свое название в честь несокрушимых Титанов, которые согласно древнегреческой мифологии были основателями мира.

По оценкам ученых суммарные мировые запасы титана на сегодняшний день составляют около 730 миллионов тонн. При нынешних темпах добычи ископаемого сырья хватит еще на 150 лет. Титан занимает 10 место по природным запасам среди всех известных металлов. Крупнейшим в мире производителем титана является российская компания «ВСМПО-Ависма», которая удовлетворяет до 35% мировых потребностей. Предприятие занимается полным циклом переработки от добычи руды до изготовления различной продукции. Оно занимает порядка 90% российского рынка по производству титана. Около 70% готовой продукции идет на экспорт.

Титан - легкий металл серебристого цвета с температурой плавления 1670 градусов по Цельсию. Проявляет высокую химическую активность только при нагревании, в нормальных условиях не реагирует с большинством химических элементов и соединений. В природе не встречается в чистом виде. Распространен в виде рутиловых (двуокись титана) и ильменитовых (сложное вещество, состоящее из двуокиси титана и оксида двухвалентного железа) руд. Чистый титан выделяется путем спекания руды с хлором, а затем вытеснения более активным металлом (чаще всего магнием) из полученного тетрахлорида.

Промышленное применение титана

Самый твердый металл имеет довольно широкий спектр применения во многих отраслях. Аморфно расположенные атомы обеспечивают титану высочайший уровень прочности на растяжение и кручение, хорошую сопротивляемость ударному воздействию, высокие магнитные качества. Металл используется для изготовления корпусов воздушного транспорта и ракет. Он хорошо справляется с огромными нагрузками, которые испытывают на себе машины, находясь на огромной высоте. Также титан применяется при производстве корпусов для подводных лодок, так как способен выдерживать высокое давление на больших глубинах.

В медицинской отрасли металл используется при изготовлении протезов и зубных имплантатов, а также хирургических инструментов. В качестве легирующей добавки элемент добавляют в некоторые марки стали, что придает им повышенную прочность и стойкость к коррозии. Титан хорошо подходит для литья, так как позволяет получать идеально гладкие поверхности. Из него также изготавливают ювелирные украшения и декоративные изделия. Активно используются и соединения титана. Из диоксида изготавливают краски, белила, добавляют в состав бумаги и пластика.

Сложноорганические соли титана применяют в качестве затвердительного катализатора в лакокрасочном производстве. Из карбида титана изготавливают различные инструменты и насадки для обработки и сверления других металлов. В точном машиностроении из титанового алюминида производят износостойкие элементы, которые обладают высоким запасом прочности.

Самый твердый сплав металла был получен американскими учеными в 2011 году. В его состав вошли палладий, кремний, фосфор, германий и серебро. Новый материал был назван «металлическое стекло». Он соединил в себе твердость стекла и пластичность металла. Последнее не позволяет трещинам распространяться, как это происходит со стандартным стеклом. Естественно, в широкое производство материал запущен не был, так как его компоненты, особенно палладий, относятся к редким металлам и стоят очень дорого.

В данный момент усилия ученых направлены на поиски альтернативных компонентов, которые бы позволили сохранить полученные свойства, но значительно снизили стоимость производства. Тем не менее, отдельные детали для аэрокосмической отрасли уже производятся из полученного сплава. Если альтернативные элементы удастся внедрить в структуру и материал получит широкое распространение, то вполне возможно, что он станет одним из самых востребованных сплавов будущего.

При упоминании слова «металл», наверняка, каждый рисует в своем воображении твердый, долговечный и суперпрочный лист железа, который невозможно просто так загнуть или сломать. Однако металлы бывают самые разные. И если вы задаетесь вопросом, какой металл самый прочный в мире, то мы предоставим вам достоверный ответ и расскажем о таком металле. Им является материал серебристо-белого цвета, который носит название «титан».

Кем и когда открыт?

Над открытием данного металла потрудились сразу два ученых – англичанин У.Грегори и немец М.Клаптор. Они обнаружили данный элемент в конце восемнадцатого столетия, но с промежутком в шесть лет. В таблице Менделеева титан появился под двадцать вторым порядковым номером сразу после открытия металла учеными. Однако из-за высокой хрупкости титан длительное время не находил применения. А в 1925г. голландские физики сделали настоящее открытие, выделив чистейший титан, сочетающий в себе много преимуществ. Металл стал отличаться высокой технологичностью, прекрасной удельной прочностью, устойчивостью к воздействию коррозии и невероятной прочностью при воздействии высокотемпературного режима.

Основные характеристики титана

Самый прочный металл в мире, созданный учеными в 1925г., является невероятно пластичным, что позволяет создавать из него листы, прутья, ленты, трубы, проволоку и фольгу. По твердости титан тверже железа и меди в четыре раза, а также по данному параметру титан превосходит алюминий в двенадцать раз. Титановые изделия сохраняют свою прочность даже при воздействии высоких температур. Детали из титана способны служить долгий срок под воздействием сверхвысоких нагрузок.


Также самый прочный металл на Земле отличается отличными антикоррозийными характеристиками. Например, помещенная в морскую воду пластинка из титана в течение десяти лет не подвергалась воздействию ржавчины. Повышенный интерес к этому металлу есть у электротехников и радиоэлектроников – а все потому, что самый крепкий в мире металл имеет значительное электросопротивление и отличается немагнитными свойствами.

Почему данный металл назвали «титаном»?

Есть две версии происхождения его названия. По одной из них считается, что металл серебристо-белого цвета назвали по имени королевы фей Титании, которая известна из германской мифологии. А все потому, что материал помимо высокой прочности отличается еще и невероятной легкостью. По другой версии металл назван в честь могучих детей богини Геи – Титанов. Какая из этих версий имеет большую правдоподобность, судить сложно, но можно отметить, что каждая из них замечательна и имеет место быть.

Применение титана


Использование серебристого металла довольно широко. Его применяют в военной промышленности (строительство ракет, брони для летательных аппаратов, корпусов для подлодок и т.д.), медицине (протезирование), автомобилестроении, сельскохозяйственной промышленности, изготовлении мобильных телефонов и производстве ювелирных украшений.

Еще более легкий и прочный


Совершенно недавно калифорнийские ученые заявили всему миру, что открыли самый легкий и прочный металл. Это жидкий металл, который создан из смеси оксида графена и лиофилизированного углерода. Ликвид-металл уже получил высокие оценки специалистов и зарекомендовал себя в качестве идеального для литья и нержавеющего материала.


Новый металл настолько легок, что его спокойно могут удерживать цветочные лепестки. Как известно, графен отличается не только легкостью и высокой прочностью, но и прекрасной гибкостью. Поэтому ученые сегодня занимаются разработками в направлении создания сверхлегкого материала, и возможно в скором будущем перед человечеством предстанут еще более уникальные материалы.

Титан был открыт в конце XVIII века независимыми учеными из Англии и Германии. В периодической таблице элементов Д.И. Менделеева расположился в 4 группе с атомным номером 22. Довольно продолжительное время ученые не видели в титане никаких перспектив, поскольку он был очень хрупким. Но в 1925 году голландские ученые И. де Бур и А. Ван Аркель в лаборатории смогли получить чистый титан, который стал настоящим прорывом во всех отраслях.

Свойства титана

Чистый титан оказался невероятно технологическим. Он обладает пластичностью, малой плотностью, высокой удельной прочностью, коррозийной стойкостью, а также прочностью при воздействии на него высоких температур. Титан в два раза прочнее стали и в шесть раз прочнее . В сверхзвуковой авиации титан незаменим. Ведь на высоте 20 км развивает скорость, превышающую скорость звука в три раза. При этом температура корпуса самолета накаляется до 300оС. Такие условия выдерживают лишь титановые сплавы.

Титановая стружка пожароопасная, а титановая пыль вообще может взорваться. При взрыве температура вспышки может достигать 400оС.

Самый прочный на планете

Титан настолько легкий и прочный, что из его сплавов изготавливают корпуса самолетов и подводных лодок, бронежилеты и броню танков, а также применяют в ядерной технике. Еще одно замечательное свойство данного металла заключается в его пассивном воздействии на живые ткани. Только из делают остеопротезы. Из некоторых соединений титана изготавливают полудрагоценные камни и ювелирные украшения.

Химическая промышленность также не оставила титан без внимания. Во многих агрессивных средах металл не поддается коррозии. Диоксид титана используется для изготовления белой краски, при производстве пластика и бумаги, а также в качестве пищевой добавки Е171.

В шкале твердости металлов титан уступает лишь платиновым металлам и вольфраму.

Распространение и запасы

Титан довольно распространенный металл. В по этому показателю он занимает десятое место. В земной коре содержится порядка 0,57% титана. На данный момент ученым известно свыше ста минералов, в которых содержится металл. Его месторождения разбросаны практически по всему миру. Добычей титана занимаются в Китае, ЮАР, России, Украине, Индии и Японии.

Прогресс

Уже несколько лет ученые проводят исследования над новым металлом, который был назван «ликвид-металл». Данное изобретение метит на звание нового, самого прочного метала на планете. Но пока еще в твердом виде он не получен.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

К металлам относят вещества, которые обладают специфическими, характерными для них свойствами. Учитывают при этом высокую пластичность и ковкость, а также электропроводность и еще целый ряд параметров. Какой из нихсамый прочный металл , можно узнать из приведенных ниже данных.

О металлах в природе

В русский язык слово «металл» пришло из немецкого. С XVI века оно встречается в книгах, правда, достаточно редко. В дальнейшем, в эпоху Петра I, его стали употреблять более часто, причем, тогда слово имело обобщающее значение «руда, минерал, металл». И только в период деятельности М.В. Ломоносова эти понятия были разграничены.

В природе металлы встречаются в чистом виде достаточно редко. В основном, они входят в состав различных руд, а также образуют всевозможные соединения, такие как сульфиды, оксиды, карбонаты и другие. Для того чтобы получить чистые металлы, а это очень важно для их применения в дальнейшем, нужно их выделить, а затем очистить. При необходимости, металлы легируют - добавляют специальные примеси, с целью изменения их свойств. В настоящее время есть разделение на руды черных металлов, которые включают в свой состав железо, и цветных. К драгоценным или благородным металлам относят золото, платину и серебро.

Металлы есть даже в организме человека. Кальций, натрий, магний, медь, железо - вот перечень этих веществ, которые содержатся в наибольшем количестве.

В зависимости от дальнейшего применения, металлы подразделяют на группы:

  1. Конструкционные материалы. Используют как сами металлы, так и их значительно улучшенные по свойствам сплавы. В данном случае ценят прочность, непроницаемость для жидкостей и газов, однородность.
  2. Материалы для инструментов, чаще всего имеется в виду рабочая часть. Для этого подходят инструментальные стали и твердые сплавы.
  3. Электротехнические материалы. Такие металлы используют как хорошие проводники электричества. Самые распространенные из них - это медь и алюминий. А также применяют как материалы, имеющие высокое сопротивление, - нихром и другие.

Самые прочные из металлов

Прочностью металлов называют их способность оказывать сопротивление разрушению под действием внутренних напряжений, которые могут возникать при влиянии на эти материалы внешних сил. Также это свойство конструкции сохранять свои характеристики в течение определенного времени.

Многие сплавы достаточно крепкие и стойкие не только к физическим, но и химическим воздействиям, к чистым металлам они не относятся. Есть металлы, которые можно назвать самыми прочными. Титан, который плавится при температуре свыше 1 941 K (1660±20 °C), уран, относящийся к радиоактивным металлам, тугоплавкий вольфрам, закипающий при температуре не менее 5 828 K (5555 °C). А также другие, обладающие уникальными свойствами и необходимые в процессе изготовления деталей, инструментов и предметов по самым современным технологиям. В пятерку самых прочных из них входят металлы, свойства которых уже известны, их широко применяют в различных отраслях народного хозяйства и используют в научных опытах и разработках.

Встречается в молибденовых рудах и медном сырье. Имеет высокую твердость и плотность. Очень тугоплавкий. Его прочность не может быть уменьшена даже под воздействием критических перепадов температур. Широко используется во многих электронных приборах и технических средствах.

Металл, относящийся к редкоземельным, имеющий серебристо-серый оттенок и блестящие, кристаллические образования на сломах. Интересно, что кристаллы бериллия на вкус несколько сладковатые, из-за этого его первоначально называли «глюциний», что значит «сладкий». Благодаря этому металлу появилась новая технология, которую используют в синтезе искусственных камней - изумрудов, аквамаринов, для нужд ювелирной промышленности. Бериллий был открыт при изучении свойств берилла - полудрагоценного камня. В 1828 г. немецким ученым Ф. Вёллером был получен металлический бериллий. Он не взаимодействует с рентгеновским излучением, следовательно, его активно используют для создания специальных приборов. Кроме того, сплавы бериллия применяются в изготовлении нейтронных отражателей и замедлителей для установки в ядерном реакторе. Его огнеупорные и антикоррозионные свойства, высокая теплопроводность делают его незаменимым элементом для создания сплавов, используемых в самолетостроении и аэрокосмической промышленности.

Этот металл был открыт на территории среднего Урала. О нем написал М.В. Ломоносов в своей работе «Первые основания металлургии» в 1763 году. Является весьма распространенным, его самые известные и обширные месторождения расположены в ЮАР, Казахстане и России (Урал). Содержание этого металла в рудах сильно колеблется. Его цвет светло-голубой, с отливом. В чистом виде очень твердый и достаточно хорошо обрабатывается. Он служит важным компонентом для создания легированных сталей, особенно нержавеющих, применяется в гальванике и авиакосмической промышленности. Его сплав с железом, феррохром необходим для производства металлорежущих инструментов.

Этот металл относится к ценным, так как его свойства лишь ненамного ниже, чем у благородных металлов. Он обладает сильной устойчивостью к различным кислотам, не подвержен коррозии. Тантал применяется в различных конструкциях и соединениях, для изготовления изделий сложной формы и как основа для производства уксусной и фосфорной кислот. Металл используют в медицине, так как его можно совместить с тканями человека. В жаропрочном сплаве тантала и вольфрама нуждается ракетная отрасль, ведь он может выдержать температуру в 2 500 °C. Конденсаторы из тантала устанавливают на радарные аппараты, применяют в электронных системах как передатчики.

Одним из самых прочных металлов в мире считается иридий. Металл серебристого цвета, очень твердый. Его относят к металлам платиновой группы. Он трудно поддается обработке и, к тому же, тугоплавкий. Иридий практически не вступает во взаимодействие с едкими веществами. Применяют его во многих отраслях. В том числе и в ювелирном деле, медицинской и химической промышленностях. Значительно улучшает стойкость вольфрамовых, хромовых и титановых соединений по отношению к кислым средам. Чистый иридий не является токсичным материалом, но его отдельные соединения могут быть .

Несмотря на то, что многие металлы обладают достойными характеристиками, точно указать, какой именно самый прочный металл в мире, достаточно сложно. Для этого изучают все их параметры, в соответствии с различными аналитическими системами. Но в настоящее время все ученые утверждают, что первое место по прочности уверенно занимает иридий.