Кодексы РФ

Модель множественной регрессии является методом. Линейная модель множественной регрессии

1. Введение…………………………………………………………………….3

1.1. Линейная модель множественной регрессии……………………...5

1.2. Классический метод наименьших квадратов для модели множественной регрессии…………………………………………..6

2. Обобщенная линейная модель множественной регрессии……………...8

3. Список использованной литературы…………………………………….10

Введение

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большой числа факторов, которые условно можно подразделить на три группы:

Факторы, формирующую тенденцию ряда;

Факторы, формирующие циклические колебания ряда;

Случайные факторы.

При различных сочетаниях этих факторов зависимость уров­ней рада от времени может принимать разные формы.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они форми­руют его возрастающую или убывающую тенденцию.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер., поскольку экономическая деятельность ряда от­раслей зависит от времени года (например, цены на сельскохо­зяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны.

Некоторые временные ряды не содержат тенденции и цикли­ческую компоненту, а каждый следующий их уровень образуется как сумма среднего уровня рада и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воз­действием тенденции, сезонных колебаний и случайной компо­ненты.

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой времен­ной ряд представлен как сумма перечисленных компонент, назы­вается аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.


1.1. Линейная модель множественной регрессии

Парная регрессия может дать хороший результат при моделирова­нии, если влиянием других факторов, воздействующих на объект исследо­вания, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, вводя их в модель, т.е, построить уравнение множественной регрессии.

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов экономет­рики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии - построить модель с боль­шим числом факторов, определив при этом влияние каждого из них в отдель­ности, а также совокупное их воздействие на моделируемый показатель.

Общий вид линейной модели множественной регрессии:

где n - объём выборки, который по крайней мере в 3 раза превосходит m -количество независимых переменных;

у i - значение результативной пере­менной в наблюдении I;

х i1 ,х i2 , ...,х im -значения независимых перемен­ных в наблюдении i;

β 0 , β 1 , … β m -параметры уравнения регрессии, под­лежащие оценке;

ε - значение случайной ошибки модели множественной регрессии в наблюдении I,

При построении модели множественной линейной регрессии учиты­ваются следующие пять условий:

1. величины х i1 ,х i2 , ...,х im - неслучайные и независимые переменные;

2. математическое ожидание случайной ошибки уравнения регрессии
равно нулю во всех наблюдениях: М (ε) = 0, i= 1,m;

3. дисперсия случайной ошибки уравнения регрессии является постоянной для всех наблюдений: D(ε) = σ 2 = const;

4. случайные ошибки модели регрессии не коррелируют между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): соv(ε i ,ε j .) = 0, i≠j;

5. случайная ошибка модели регрессии - случайная величина, подчиняющаяся нормальному закону распределения с нулевым математическим ожиданием и дисперсией σ 2 .

Матричный вид линейной модели множественной регрессии:

где: - вектор значений результативной переменной размерности n×1

матрица значений независимых переменных размерности n× (m + 1). Первый столбец этой матрицы является единичным, так как в модели регрессии коэффициент β 0 , умножается на единицу;

Вектор значений результативной переменной размерности (m+1)×1

Вектор случайных ошибок размерности n×1

1.2. Классический метод наименьших квадратов для модели множественной регрессии

Неизвестные коэффициенты линейной модели множественной рег­рессии β 0 , β 1 , … β m оцениваются с помощью классического метода наи­меньших квадратов, основная идея которого заключается в определении такого вектора оценки Д, который минимизировал бы сумму квадратов отклонений наблюдаемых значений результативной переменной у от мо­дельных значений (т. е. рассчитанных на основании построенной моде­ли регрессии).

Как известно из курса математического анализа, для того чтобы най­ти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Обозначив b i с соответствующими индексами оценки коэффициентов модели β i , i=0,m, имеет функцию m+1 аргумента.

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения оценок параметров линейного уравнения множественной регрессии.

Полученная система нормальных уравнений является квадратной, т. е. количество уравнений равняется количеству неизвестных переменных, поэтому решение системы можно найти с помощью метода Крамера или метода Гаусса,

Решением системы нормальных уравнений в матричной форме будет вектор оценок.

На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии, т. е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором х i при закреплении остальных факторов на среднем уровне.

При подстановке в эти уравнения средних значений соответствую­щих факторов они принимают вид парных уравнений линейной регрессии.

В отличие от парной регрессии, частные уравнения регрессии харак­теризуют изолированное влияние фактора на результат, ибо другие факто­ры закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

где b i - коэффициент регрессии для фактора x i ; в уравнении множествен­ной регрессии,

у х1 хm - частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть най­дены средние по совокупности показатели эластичности. которые показывают, на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе из воздействия на результат.

2. Обобщенная линейная модель множественной регрессии

Коренное отличие обобщенной модели от классической состоит только в виде ковариационной квадратной матрицы вектора возмущений: вместо матрицы Σ ε = σ 2 E n для классической модели имеем матрицу Σ ε = Ω для обобщенной. Последняя имеет произвольные значения ковариаций и дисперсий. Например, ковариационные матрицы классической и обобщенной моделей для двух наблюдений (п=2) в общем случае будут иметь вид:

Формально обобщенная линейная модель множественной регрессии (ОЛММР) в матричной форме имеет вид:

Y = Xβ + ε (1)

и описывается системой условий:

1. ε – случайный вектор возмущений с размерностью n; X -неслучайная матрица значений объясняющих переменных (матрица плана) с размерностью nх(р+1); напомним, что 1-й столбец этой матрицы состоит из пединиц;

2. M(ε) = 0 n – математическое ожидание вектора возмущений равно ноль-вектору;

3. Σ ε = M(εε’) = Ω, где Ω – положительно определенная квадратная матрица; заметим, что произведение векторов ε‘ε дает скаляр, а произведение векторов εε’ дает матрицу размерностью nxn;

4. Ранг матрицы X равен р+1, который меньше n; напомним, что р+1 - число объясняющих переменных в модели (вместе с фиктивной переменной), n - число наблюдений за результирующей и объясняющими переменными.

Следствие 1. Оценка параметров модели (1) обычным МНК

b = (X’X) -1 X’Y (2)

является несмещенной и состоятельной, но неэффективной (неоптимальной в смысле теоремы Гаусса-Маркова). Для получения эффективной оценки нужно использовать обобщенный метод наименьших квадратов.

Множественный регрессионный анализ является расширением парного регрессионного анализа. О применяется в тех случаям, когда поведение объясняемой, зависимой переменной необходимо связать с влиянием более чем одной факторной, независимой переменной. Хотя определенная часть многофакторного анализа представляет собой непосредственное обобщение понятий парной регрессионной модели, при выполнении его может возникнуть ряд принципиально новых задач.

Так, при оценке влияния каждой независимой переменной необходимо уметь разграничивать ее воздействие на объясняемую переменную от воздействия других независимых переменных. При этом множественный корреляционный анализ сводится к анализу парных, частных корреляций. На практике обычно ограничиваются определением их обобщенных числовых характеристик, таких как частные коэффициенты эластичности, частные коэффициенты корреляции, стандартизованные коэффициенты множественной регрессии.

Затем решаются задачи спецификации регрессионной модели, одна из которых состоит в определении объема и состава совокупности независимых переменных, которые могут оказывать влияние на объясняемую переменную. Хотя это часто делается из априорных соображений или на основании соответствующей экономической (качественной) теории, некоторые переменные могут в силу индивидуальных особенностей изучаемых объектов не подходить для модели. В качестве наиболее характерных из них можно назвать мультиколлинеарность или автокоррелированность факторных переменных.

3.1. Анализ множественной линейной регрессии с помощью

метода наименьших квадратов (МНК)

В данном разделе полагается, что рассматривается модель регрессии, которая специфицирована правильно. Обратное, если исходные предположения оказались неверными, можно установить только на основании качества полученной модели. Следовательно, этот этап является исходным для проведения множественного регрессионного анализа даже в самом сложном случае, поскольку только он, а точнее его результаты могут дать основания для дальнейшего уточнения модельных представлений. В таком случае выполняются необходимые изменения и дополнения в спецификации модели, и анализ повторяется после уточнения модели до тех пор, пока не будут получены удовлетворительные результаты.

На любой экономический показатель в реальных условиях обычно оказывает влияние не один, а несколько и не всегда независимых факторов. Например, спрос на некоторый вид товара определяется не только ценой данного товара, но и ценами на замещающие и дополняющие товары, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии M (Y / Х = х ) = f (x ) рассматривается множественная регрессия

M (Y / Х1 = х1, Х2 = х2, …, Хр = Хр ) = f (x 1 , х 2 , …, х р ) (2.1)

Задача оценки статистической взаимосвязи переменных Y и Х 1 , Х 2 , ..., Х Р формулируется аналогично случаю парной регрессии. Уравнение множественной регрессии может быть представлено в виде

Y = f (B , X ) + 2

где X - вектор независимых (объясняющих) переменных; В - вектор параметров уравнения (подлежащих определению); - случайная ошибка (отклонение); Y - зависимая (объясняемая) переменная.

Предполагается, что для данной генеральной совокупности именно функция f связывает исследуемую переменную Y с вектором независимых переменных X .

Рассмотрим самую употребляемую и наиболее простую для статистического анализа и экономической интерпретации модель множественной линейной регрессии. Для этого имеются, по крайней мере, две существенные причины.

Во-первых, уравнение регрессии является линейным, если система случайных величин (X 1 , X 2 , ..., Х Р , Y ) имеет совместный нормальный закон распределения. Предположение о нормальном распределении может быть в ряде случаев обосновано с помощью предельных теорем теории вероятностей. Часто такое предположение принимается в качестве гипотезы, когда при последующем анализе и интерпретации его результатов не возникает явных противоречий.

Вторая причина, по которой линейная регрессионная модель предпочтительней других, состоит в том, что при использовании ее для прогноза риск значительной ошибки оказывается минимальным.

Теоретическое линейное уравнение регрессии имеет вид:

или для индивидуальных наблюдений с номером i :

где i = 1, 2, ..., п.

Здесь В = (b 0 , b 1 ,b Р) - вектор размерности (р+1) неизвестных параметров b j , j = 0, 1, 2, ..., р , называется j -ым теоретическим коэффициентом регрессии (частичным коэффициентом регрессии). Он характеризует чувствительность величины Y к изменению X j . Другими словами, он отражает влияние на условное математическое ожидание M (Y / Х1 = х1, Х2 = х2, …, Хр = x р ) зависимой переменной Y объясняющей переменной Х j при условии, что все другие объясняющие переменные модели остаются постоянными. b 0 - свободный член, определяющий значение Y в случае, когда все объясняющие переменные X j равны нулю.

После выбора линейной функции в качестве модели зависимости необходимо оценить параметры регрессии.

Пусть имеется n наблюдений вектора объясняющих переменных X = (1 , X 1 , X 2 , ..., Х Р ) и зависимой переменной Y :

(1 , х i1 , x i2 , …, x ip , y i ), i = 1, 2, …, n.

Для того чтобы однозначно можно было бы решить задачу отыскания параметров b 0 , b 1 , … , b Р (т.е. найти некоторый наилучший вектор В ), должно выполняться неравенство n > p + 1 . Если это неравенство не будет выполняться, то существует бесконечно много различных векторов параметров, при которых линейная формула связи между X и Y будет абсолютно точно соответствовать имеющимся наблюдениям. При этом, если n = p + 1 , то оценки коэффициентов вектора В рассчитываются единственным образом - путем решения системы p + 1 линейного уравнения:

где i = 1, 2, ..., п.

Например, для однозначного определения оценок параметров уравнения регрессии Y = b о + b 1 X 1 + b 2 X 2 достаточно иметь выборку из трех наблюдений (1 , х i 1 , х i 2 , y i), i = 1, 2, 3. В этом случае найденные значения параметров b 0 , b 1 , b 2 определяют такую плоскость Y = b о + b 1 X 1 + b 2 X 2 в трехмерном пространстве, которая пройдет именно через имеющиеся три точки.

С другой стороны, добавление в выборку к имеющимся трем наблюдениям еще одного приведет к тому, что четвертая точка (х 41 , х 42 , х 43 , y 4) практически всегда будет лежать вне построенной плоскости (и, возможно, достаточно далеко). Это потребует определенной переоценки параметров.

Таким образом, вполне логичен следующий вывод: если число наблюдений больше минимально необходимой величины, т.е. n > p + 1 , то уже нельзя подобрать линейную форму, в точности удовлетворяющую всем наблюдениям. Поэтому возникает необходимость оптимизации, т.е. оценивания параметров b 0 , b 1 , …, b Р , при которых формула регрессии дает наилучшее приближение одновременно для всех имеющихся наблюдений.

В данном случае число  = n - p - 1 называется числом степеней свободы. Нетрудно заметить, что если число степеней свободы невелико, то статистическая надежность оцениваемой формулы невысока. Например, вероятность надежного вывода (получения наиболее реалистичных оценок) по трем наблюдениям существенно ниже, чем по тридцати. Считается, что при оценивании множественной линейной регрессии для обеспечения статистической надежности требуется, чтобы число наблюдений превосходило число оцениваемых параметров, по крайней мере, в 3 раза.

Прежде чем перейти к описанию алгоритма нахождения оценок коэффициентов регрессии, отметим желательность выполнимости ряда предпосылок МНК, которые позволят обосновать характерные особенности регрессионного анализа в рамках классической линейной многофакторной модели.

На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. Например, спрос на некоторое благо определяется не только ценой данного блага, но и ценами на замещающие и дополняющие блага, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии рассматривается множественная регрессия

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и в ряде других вопросов экономики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике. Основной целью множественной регрессии является построение модели с большим числом факторов, а также определение влияния каждого фактора в отдельности и совокупного их воздействия на моделируемый показатель.

Множественный регрессионный анализ является развитием парного регрессионного анализа в случаях, когда зависимая переменная связана более чем с одной независимой переменной. Большая часть анализа является непосредственным расширением парной регрессионной модели, но здесь также появляются и некоторые новые проблемы, из которых следует выделить две. Первая проблема касается исследования влияния конкретной независимой переменной на зависимую переменную, а также разграничения её воздействия и воздействий других независимых переменных. Второй важной проблемой является спецификация модели, которая состоит в том, что необходимо ответить на вопрос, какие факторы следует включить в регрессию (1), а какие - исключить из неё. В дальнейшем изложение общих вопросов множественного регрессионного анализа будем вести, разграничивая эти проблемы. Поэтому вначале будем полагать, что спецификация модели правильна.

Самой употребляемой и наиболее простой из моделей множественной регрессии является линейная модель множественной регрессии:

y=α"+β 1 "x 1 + β 2 "x 2+…+ β p "x p +ε (2)

По математическому смыслу коэффициенты β" j в уравнении (2) равны частным производным результативного признака у по соответствующим факторам:

Параметр а" называется свободным членом и определяет значение у в случае, когда все объясняющие переменные равны нулю. Однако, как и в случае парной регрессии, факторы по своему экономическому содержанию часто не могут принимать нулевых значений, и значение свободного члена не имеет экономического смысла. При этом, в отличие от парной регрессии, значение каждого регрессионного коэффициента β" j равно среднему изменению у при увеличении x j на одну единицу лишь при условии, что все остальные факторы остались неизменными. Величина Î представляет собой случайную ошибку регрессионной зависимости.

Попутно отметим, что наиболее просто можно определять оценки параметров β" j , изменяя только один фактор x j , оставляя при этом значения других факторов неизменными. Тогда задача оценки параметров сводилась бы к последова­тельности задач парного регрессионного анализа по каждому фактору. Однако такой подход, широко используемый в естественнонаучных исследованиях, (физических, химических, биологических), в экономике является неприемлемым. Экономист, в отличие от экспериментатора - естественника, лишен возможности регулировать отдельные факторы, поскольку не удаётся обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора.

Получение оценок параметров α ׳ , b 1 ’ , b 2 ’ , …, b p уравнения регрессии (2) - одна из важнейших задач множественного регрессионного анализа. Самым распространенным методом решения этой задачи является метод наименьших квадратов (МНК). Его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной у от её значений получаемых по уравнению регрессии. Поскольку параметры а " , b 1 ’ , b 2 ’ , …, b p являются неизвестными константами, вместо теоретического уравнения регрессии (2), оценивается так называемоеэмпирическое уравнение регрессии, которое можно представить в виде:

Здесь a, b 1 , b 2 ,.. b p - оценки теоретических значений α", β 1 ", β 2 " ",…, β р ", или эмпирические коэффициенты регрессии, е -- оценка отклонения ε. Тогда расчетное выражение имеет вид:

Пусть имеется п наблюдений объясняющих переменных и соответствующих им значений результативного признака:

, (5)

Для однозначного определения значений параметров уравнения (4) объем выборки п должен быть не меньше количества параметров, т.е. п≥р+1 . В противном случае значения параметров не могут быть определены однозначно. Если п=р+1 , оценки параметров рассчитываются единственным образом без МНК простой подстановкой значений (5) в выражение (4). Получается система (р+1) уравнений с таким же количеством неизвестных, которая решается любым способом, применяемым к системам линейных алгебраических уравнений (СЛАУ). Однако с точки зрения статистического подхода такое решение задачи является ненадежным, поскольку измеренные значения переменных (5) содержат различные виды погрешностей. Поэтому для получения надежных оценок параметров уравнения (4) объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при x j в уравнении (4) в 6-7 раз.

Для проведения анализа в рамках линейной модели множественной регрессии необходимо выполнение ряда предпосылок МНК. В основном это те же предпосылки, что и для парной регрессии, однако здесь нужно добавить предположения, специфичные для множественной регрессии:

5°. Спецификация модели имеет вид (2).

6°. Отсутствие мультиколлинеарности: между объясняющими переменными отсутствует строгая линейная зависимость, что играет важную роль в отборе факторов при решении проблемы спецификации модели.

7°. Ошибки ε i , , имеют нормальное распределение (ε i ~ N(0, σ)) . Выполнимость этого условия нужна для проверки статистических гипотез и построения интервальных оценок.

При выполнимости всех этих предпосылок имеет место многомерный аналог теоремы Гаусса - Маркова: оценки a,b 1 , b 2 ,... b p , полученные по МНК, являются наиболее эффективными (в смысле наименьшей дисперсии) в классе линейных несмещенных оценок.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономических переменных контролировать нельзя, т. е. не удается обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. построить уравнение множественной регрессии:

Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты - частныепроизводные потребления по соответствующим факторам :

в предположении, что все остальные постоянны.

В 30-е гг. XX в. Кейнс сформулировал свою гипотезу потребительской функции. С того времени исследователи неоднократно обращались к проблеме ее совершенствования. Современная потребительская функция чаще всего рассматривается как модель вида:

где С - потребление; у - доход; Р - цена, индекс стоимости жизни; М - наличные деньги; Z - ликвидные активы.

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций; при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов эконометрики. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Построение уравнения множественной регрессия начинается с решения вопроса о спецификации модели. Спецификация модели включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Требования к факторам.

1 Они должны быть количественно измеримы.

2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Разновидностью интеркоррелированности факторов является мультиколлинеарность - наличие высокой линейной связи между всеми или несколькими факторами.

Причинами возникновения мультиколлинеарности между призанками являются:

1. Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;

2. Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;

3. Факторные признаки, являющиеся составными элементами друг друга;

4. Факторные признаки, по экономическому смыслу дублирующие друг друга.

5. Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 (rxi xj) и др.

Мультиколлинеарность может привести к нежелательным последствиям:

1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;

3) нельзя определить изолированное влияние факторов на результативный показатель.

Включение в модель факторов с высокой интеркорреляцией (Ryx1Rx1x2) может привести к ненадежности оценок коэф-ов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретированными. Включаемые во множ.регрессию факторы должны объяснить вариацию независимой переменной. Отбор факторов производится на основе качественного теоретико-экономического анализа, который обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Если факторы коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Классический метод наименьших квадратов (МНК) для модели множественной регрессии. Свойства оценок МНК для модели множественной регрессии и показатели качества подбора регрессии: коэффициент множественной корреляции, коэффициенты частной корреляции, коэффициент множественной детерминации

Мультиколлинœеарность факторов. Признаки мультиколлинœеарности и способы ее устранения. Гомоскедастичность и гетероскедастичность остатков. Графический метод обнаружения гетероскедастичности. Причины и последствия гетероскедастичности.

МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

На любой экономический показатель чаще всœего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная регрессия

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и в ряде других вопросов экономики. Сегодня множественная регрессия – один из наиболее распространенных методов в эконометрике. Основной целью множественной регрессии является построение модели с большим числом факторов, а также определœение влияния каждого фактора в отдельности и совокупного их воздействия на моделируемый показатель.

Множественный регрессионный анализ является развитием парного регрессионного анализа в случаях, когда зависимая переменная связана более чем с одной независимой переменной. Большая часть анализа является непосредственным расширением парной регрессионной модели, но здесь также появляются и некоторые новые проблемы, из которых следует выделить две. Первая проблема касается исследования влияния конкретной независимой переменной на зависимую переменную, а также разграничения её воздействия и воздействий других независимых переменных. Второй важной проблемой является спецификация модели, которая состоит в том, что крайне важно ответить на вопрос, какие факторы следует включить в регрессию (1), а какие – исключить из неё.

Самой употребляемой и наиболее простой из моделœей множественной регрессии является линœейная модель множественной регрессии:

Параметр α принято называть свободным членом и определяет значение y в случае, когда всœе объясняющие переменные равны нулю. При этом, как и в случае парной регрессии, факторы по своему экономическому содержанию часто не могут принимать нулевых значений, и значение свободного члена не имеет экономического смысла. При этом, в отличие от парной регрессии, значение каждого регрессионного коэффициента равно среднему изменению y при увеличении x j на одну единицу лишь при условии, что всœе остальные факторы остались неизменными. Величина ε представляет собой случайную ошибку регрессионной зависимости.

Получение оценок параметров уравнения регрессии (2) – одна из важнейших задач множественного регрессионного анализа. Самым распространенным методом решения этой задачи является метод наименьших квадратов (МНК). Его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной y от её значений , получаемых по уравнению регрессии.

Пусть имеется n наблюдений объясняющих переменных и соответствующих им значений результативного признака:

Для однозначного определœения значений параметров уравнения (4) объём выборки n должен быть не меньше количества параметров, ᴛ.ᴇ. . В противном случае значения параметров не бывают определœены однозначно. В случае если n=p +1, оценки параметров рассчитываются единственным образом без МНК простой подстановкой значений (5) в выражение (4). Получается система (p +1) уравнений с таким же количеством неизвестных, которая решается любым способом, применяемым к системам линœейных алгебраических уравнений (СЛАУ). При этом с точки зрения статистического подхода такое решение задачи является ненадежным, поскольку измеренные значения переменных (5) содержат различные виды погрешностей. По этой причине для получения надежных оценок параметров уравнения (4) объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при x j в уравнении (4) в 6-7 раз.

Линейная модель множественной регрессии - понятие и виды. Классификация и особенности категории "Линейная модель множественной регрессии" 2017, 2018.