Бизнес

Взаимодействие mes с другими системами. MES-системы в дискретном производстве

В данной статье мы хотим рассказать о том, какие возможности предоставляют системы оперативного управления производством Manufacturing Execution Systems (MES), и о передовых российских разработках систем этого класса в частности.

Систем много, а я один: ERP или MES?

Не секрет, что число автоматизированных систем на российском рынке постоянно увеличивается, поэтому разобраться в них и определиться с выбором российскому предприятию очень непросто.

Рекламные усилия пропагандистов ERP прочно утвердили образ этого класса систем в сознании IT-менеджеров и руководителей предприятий как панацею от всех бед. Проще говоря, перекос в область ERP-зации на отечественном рынке софта налицо. Между тем все чаще и чаще мы слышим вздохи и сожаления, что «внедрение системы затянулось на годы», «результат от внедрения пока не виден», «до автоматизации производства так и не дошли», «попытка внедрения системы на производстве не устранила существующих проблем» и т.д. и т.п.

Почему же не оправдались надежды? Причин много, но самая главная из них заключается в том, что палочки-выручалочки для решения всех проблем финансово-хозяйственной деятельности компаний для всех отраслей промышленности, к сожалению, не существует в природе. Каждый класс систем, каждая система решает те задачи, для которых они предназначены.

Не вдаваясь в подробности, попробуем выделить специфический круг проблем, которые могут решаться с помощью MES-систем, но находятся вне компетенции традиционных ERP.

Итак, рассмотрим производственное предприятие, — основной сферой деятельности которого является создание и выпуск продукции. Это источник добавленной стоимости для предприятия, и от эффективности организации производственных процессов зависит в конечном счете себестоимость продукции, а значит, ее рыночная конкурентоспособность. Все остальные процессы на производственном предприятии — закупки, маркетинг, финансово-учетные, управление персоналом и складской деятельностью и т.д. — существуют по большому счету только потому, что есть для чего закупать комплектующие, что продавать, что учитывать, что складировать...

ERP-системы широкого профиля — какая-то хуже, какая-то лучше — в целом справляются с задачами поддержки этих вспомогательных процессов. Отдельные продвинутые системы данного класса включают также и модули управления производством. Само словосочетание «управление производством» слишком общее и весьма привлекательное, поэтому многие покупаются на это, но потом часто выясняется, что функциональность включает лишь внешнюю оболочку процессов управления производством, не затрагивая его ядра, то есть управления производственной деятельностью как таковой.

Где же заканчивается оболочка и начинается ядро, обслуживать которое и призваны MES-системы? В чем же их функциональность и почему она так привлекает сегодня руководителей производств? Попробуем разобраться.

Не затрагивая вопросов автоматизации на аппаратном уровне, то есть на уровне так называемых SCADA-систем (управление счетчиками, датчиками и прочими приборами и оборудованием), MES концентрируются на поддержке плановой и организационной составляющих самого производственного процесса. Ключевыми процессами для них являются следующие (более детально о функциях MES вы можете почитать, к примеру, на www.mesa.ru):

1. На базе внешней потребности в производстве продукции (основанной на заказах клиентов, планах продаж и т.д.), а также предыдущих производственных программ с учетом всевозможных нюансов и специфики производства на конкретном предприятии, о которых речь пойдет ниже, автоматически формируется детальное оптимизированное производственное расписание работ, операций для станков, оборудования, персонала. Разумеется, с автоформированием всей необходимой для осуществления работ документацией: производственных программ, нарядов, лимитно-заборных карт, таблиц и диаграмм загрузки оборудования и пр.

2. В ходе непосредственной реализации производственных программ осуществляется полная диспетчеризация всех операций и их результатов (как положительных, так и отрицательных — брака, задержек и др.), потока изготавливаемых деталей по операциям, заказам, партиям, сериям, работоспособности оборудования и др.

3. При выявлении отклонений от запланированных программ в силу объективно сложившейся ситуации на производстве, при появлении новой внешней потребности (заказов и др.) производится оперативное перепланирование с коррекцией всех составляющих.

Отметим, что сегодня в Западной Европе в MES вкладываются немалые деньги: по данным аналитической компании Frost&Sullivan, мировой рынок MES достиг 1,2 млрд. долл. в 2003 году, а к 2010 году вырастет до 2,5 млрд. Западный предприниматель хорошо знает, где именно создается прибавочная стоимость и образуются основные издержки на его предприятии.

В чем же здесь отличие от «управления производством», реализованного в некоторых ERP-системах? А отличия, как всегда, кроются в деталях, принципиальных для правильной работы производства.

Во-первых, не все ERP-системы способны осуществлять планирование производства: многие производители, громко заявляя об управлении, ограничиваются исключительно учетными функциями. Далее системы, позиционируемые как удовлетворяющие стандартам MRP, MRPII (управление ресурсами) и включающие функции планирования, делают это в слишком общем виде, без учета всех необходимых особенностей производства. Так, планирование часто осуществляется на уровне цехов и участков, как правило, в виде объемных планов, поскольку особенности заложенного способа планирования не позволяют дойти до уровня операций на конкретном оборудовании и конкретных рабочих местах. А ведь каждая единица оборудования может иметь собственный график работы, свои особенности по ограничениям загрузки, мощности и т.д., индивидуальные планы ремонтных работ и непредвиденные поломки. Такое планирование часто приводит к недопустимым на производстве ошибкам: бывает, что сформированный план невыполним на нижнем уровне из-за перекрытия, наложения производственных операций по времени для некоторых станков, а значит, он будет неизбежно сорван.

В ряду наиболее важных особенностей планирования для многих предприятий следует выделить необходимость учета взаимозаменяемых станков, способных выполнять одинаковые операции. Отсутствие учета этой специфики в ERP-системах не позволяет осуществить распараллеливание критичных операций, что в итоге приводит к неоптимальному графику производства. Кроме того, ERP-системы не производят должной диспетчеризации производственных процессов, довольствуясь лишь фиксацией его выходных результатов.

YSB.Enterprise.Mes: пример расчета производственного расписания

Стоит ли говорить, что MES-системы позволяют корректировать либо полностью пересчитывать производственное расписание и все необходимые для оперативной работы данные в течение рабочей смены ровно столько раз, сколько требуется. В то же время перепланирование в ERP оказывается целесообразным не чаще одного раза в сутки. И это вполне объяснимо. Дело в том, что формирование подробных производственных расписаний с учетом всей необходимой специфики и на требуемом уровне детальности — сложнейшая вычислительная задача как по количеству вычислений (разумеется, если предприятие производит не три вида продукции на трех станках), так и по сложности вычислительных алгоритмов. Решить ее «на коленке», как и «на бумажке» — слишком трудоемко (а оптимально решить подчас просто невозможно). А для разработчиков систем важно осуществить этот расчет за обозримое для производства время, ведь если программа зависнет на часы, то зачем она нужна? Недаром разработкой MES-систем, о которых речь пойдет ниже, занимаются выходцы из академической науки, полжизни посвятившие таким разделам математики, как исследование операций и теория расписаний.

В настоящее время на рынке существует много различных программных продуктов, в описаниях которых декларируется, что они умеют планировать производство, составлять производственные расписания. И в связи с этим хочется обратить внимание читателей еще на один принципиальный момент. При анализе программ весьма желательно поинтересоваться, в соответствии с какими критериями составлено производственное расписание, ведь без этого вы не сможете судить, насколько оно вас удовлетворяет, подходит ли такой способ планирования вашему конкретному предприятию. Когда скрываются критерии планирования (а такое, увы, нередко встречается), это вызывает определенную настороженность. Если поставщики боятся прямых тестовых сравнений, то стоит задуматься, реализованы ли эти критерии вообще.

Российские передовики MES-производства

Ниже речь пойдет о трех прогрессивных отечественных разработках, имеющих полное право носить гордое имя MES, и о некоторых внутривидовых отличиях. Это продукты многолетней работы трех научных центров разработки систем данного класса — из Москвы (система ФОБОС, www.mesa.ru), Орла (система YSB.Enterprise.Mes, www.orel.ru/jsb) и Уфы (система PolyPlan).

Несмотря на то что все три системы предназначены для оперативного управления производством дискретного типа — преимущественно позаказного, мелкосерийного и единичного (заметим, что для массового и серийного производства планирование проще, а потому возможностей ERP зачастую бывает достаточно), они реализуют вышеописанные возможности, хотя назначение систем несколько различается.

Так, ФОБОС традиционно используется на крупных и средних машиностроительных предприятиях. YSB.Enterprise.Mes возникла из деревообрабатывающей промышленности и ввиду особенностей, изложенных ниже, ориентируется на сектор средних и мелких предприятий. Система PolyPlan имеет меньший набор функций MES, но позиционируется как система оперативно-календарного планирования для автоматизированных и гибких производств в машиностроении.

В целом эти системы функционально очень близки, а их разработчики — опытные специалисты в области управления производством, так что, несмотря на различия в позиционировании, системы могут быть адаптированы под разнообразные отраслевые особенности дискретного или сводимого к дискретному производству.

Различия же систем в следующем. ФОБОС осуществляет внутрицеховое планирование и управление, традиционно принимая и отдавая входные и выходные данные ERP-системе, которая обычно используется в машиностроении на крупных заводах. Как правило, это тяжелые ERP-продукты, такие как BAAN и SAP, взаимодействие с которыми осуществляется посредством интеграции, хотя сейчас ведутся работы и по интеграции с «1С:Предприятием». В комплексе с этими системами ФОБОС способен решать большинство задач крупного предприятия.

Система YSB.Enterprise, напротив, функционировала на предприятиях среднего размера и постепенно расширила свои функциональные возможности «вправо и влево» от MES, включив в свой состав продажи с формированием портфеля заказов, возможности по управлению складским дефицитом (не только производственного происхождения) и даже бухгалтерию с расчетом заработной платы многообразными способами. В настоящее время идут разработки по созданию модуля управления закупками. Конечно, до уровня полноценной ERP функционал системы пока не дорос, тем не менее имеющихся возможностей может быть достаточно для многих российских предприятий. Такая политика позиционирования разработчиками системы выбрана из-за того, что предприятия среднего класса и ниже, уже переросшие «1С», пока обделены полноценной производственной автоматизацией — цены на западный и российский софт, включающий хоть сколько-нибудь серьезное производство, не говоря уже об оптимальном его планировании, пока превышают уровень доступности для большинства компаний, вынужденных значительную часть средств инвестировать в свое развитие.

Расширенный спектр функций YSB.Enterprise по сравнению с традиционными MES предоставляет возможности учета дополнительных данных при управлении производством. Так, включение склада позволяет организовать определение приоритетов при запуске заказов в производство, к примеру при недостаточной обеспеченности покупными материалами или отсутствии предоплаты за заказ.

Российская MES-система PolyPlan тоже ориентирована на машиностроительные производства, но, кроме традиционного класса обслуживающих устройств типа рабочих центров (РЦ), оперативно-календарное планирование PolyPlan предполагает формирование расписаний для транспортных систем, осуществляющих перевозку партий деталей между РЦ, складских устройств приема-выдачи партий деталей и бригад наладчиков. Ввиду отсутствия явного контура оперативной диспетчеризации PolyPlan стоит несколько дешевле указанных выше систем.

Система MES PolyPlan легко адаптируется для управления и неавтоматизированным производством. Ориентированная на машиностроение, она может быть также использована и на этапе маркетинга — программа позволяет на основе укрупненных данных определить возможность выполнения портфеля заказов по существующим фондам времени технологического оборудования. При оперативном планировании производства возможно получение нескольких допустимых решений расписания. Чем больше глубина поиска, которая задается пользователем, тем больше время счета, но тем выше и точность построения расписания. Точность «однопроходной» оптимизации, часто используемой в таких задачах, отличается от оптимального решения не более чем на 5-7%, но на порядки экономит время счета.

Рассказывает Евгений Борисович Фролов, главный конструктор системы ФОБОС, доктор технических наук, профессор, заведующий лабораторией исполнительных производственных систем Института конструкторско-технологической информатики РАН (ИКТИ РАН): «По существу, если составлять с помощью компьютеров оптимальные производственные расписания и иметь возможность в случае необходимости оперативно осуществлять их коррекцию, то можно гарантированно повысить скорость исполнения заказов. Опыт показывает, что часто можно выполнить весь месячный план всего за 20 дней. Оптимизация материальных потоков позволяет на 10 дней, то есть на 30%, сократить время выпуска изделий! А увеличение скорости прохождения производственных заказов в 1,5 раза позволяет также снизить и объем НЗП приблизительно на 25%».

В связи с такими впечатляющими цифрами надо отметить, что экономическая эффективность внедрения ERP-систем во многих случаях туманна и расплывчата и по этому поводу не смолкают споры специалистов. Напротив, для MES такая эффективность рассчитывается довольно точно, а ведь даже 10-процентное ускорение производственной деятельности за счет оптимизации, расшивки узких мест и увеличения пропускной способности вкупе с уменьшением накладных затрат при сокращении сроков — это уже очень существенно!

Сахават Юсифов, главный разработчик YSB.Enterprise.Mes: «Нормальная организация и автоматизация управления производством позволяет перенести акценты с плановых и производственных отделов на отдел продаж и рекламаций при работе под заказ — как это и должно быть в любой клиентоориентированной компании. При этом усиливается роль системы сбора информации о ходе производства и систем слежения за состоянием ресурсов, запасов, дефицитов».

Новые проекты MES в Китае: Поднебесная демонстрирует свои успехи не только в космосе…

Нередко, задумываясь о проблеме повышении фондоотдачи основного технологического оборудования, руководители отечественных производств ориентируются в основном на передовой западный опыт. В России же новое перспективное направление MES проходит только первые этапы своего становления. А что Восток?

В настоящее время спрос на наукоемкие разработки для производства опережает предложение в силу быстрого экономического роста китайских предприятий. И если CAD/CAM-системы уже получили широкое распространение даже на небольших предприятиях Китая и интенсивно используются, то системы внутрицехового планирования и диспетчерского контроля уровня MES практически отсутствуют, хотя потребность в них велика. Дело в том, что использование западных систем, позволяющих решать эти задачи, зачастую тормозится их высокой стоимостью, трудностью адаптации к потребностям китайских предприятий, а иногда и неудобством пользовательского интерфейса.

Как известно, правила формирования и оформления технологических процессов и инженерной документации в России и Китае в основном совпадают, методы организации производства в обеих странах ориентированы на контроль за выполнением работ, указанных в рабочих нарядах. При сходной методике создания маршрутных и операционных технологий можно сравнительно просто (в отличие от западных программных продуктов) осуществлять с помощью китайской версии MES системы ФОБОС внутрицеховое оперативное планирование, диспетчерский контроль и учет межоперационных заделов.

В качестве примера успешных внедрений ФОБОС в КНР можно привести завод по производству гидравлических машин и теплообменного оборудования компании «Шэнжоу» (г.Фушань), завод по производству крупных штампов «Линшихао» (г.Гуанчжоу), завод KONKA (г.Шенжень) и ряд других предприятий.

Как любят говорить китайцы, если коммунизм распространялся в Китае с севера на юг, то капитализм движется с юга на север. Не случайно, что основная часть MES-проектов здесь выполняется на предприятиях провинции Гуандун — наиболее интенсивно развивающейся в мире области, расположенной на юге Китая. Поднебесная явно демонстрирует мировому сообществу, что она добивается существенных успехов не только в космосе…

Свой — чужой

Почему мы решили поговорить об отечественных MES-продуктах?

Во-первых, из-за их адаптивности. С отечественными разработчиками всегда проще договориться о доработках. Центры разработок западных систем находятся не в России. Существенно видоизменять логику системы под специфику конкретного предприятия — весьма трудоемкая задача, и не многие компании-внедренцы на это пойдут, а если и пойдут, то цена вопроса будут сравнимой с и так не маленькой ценой западных систем.

Во-вторых, российские системы значительно дешевле — как по лицензиям на софт, так и по стоимости его внедрения и сопровождения. Дешевле — так как западные компании отчисляют средства создателям систем плюс огромные затраты на маркетинг, а к тому же фирмы-представители часто находятся в Москве, где затраты на их содержание гораздо выше, чем в регионах, да и цены на специалистов по западным системам существенно превышают наши цены. И это при том, что квалификация российских специалистов в целом существенно выше, ведь они разрабатывали эти системы с нуля, знают их как свои пять пальцев, в отличие от пришедших на российский рынок западных систем, которые местные внедренцы часто вынуждены изучать непосредственно в ходе внедрения проектов, так как у многих продуктов отсутствует документация на русском и т.д.

А главное — описанные нами российские MES-системы не уступают своим западным аналогам, а во многом и превосходят их. Конечно, не нужно ориентироваться исключительно на популярный слоган: «Покупайте только российское», но, тем не менее, стоит присмотреться к отечественной продукции — особенно в преддверии вступления России в ВТО…

Юлия Гараева

IT-консультант по выбору систем Корпорации МетаСинтез (г.Москва).

Равиль Загидуллин

Канд. техн. наук, доцент, докторант УГАТУ, каф. автоматизированных технологических систем (г.Уфа).

Сун Кай Цин

Аспирант Гуандонского технического университета, КНР.

MES (Manufacturing Execution System) - производственная исполнительная система. MES - это специализированные программные комплексы, которые предназначены для решения задач оперативного планирования и управления производством. Системы данного класса призваны решать задачи синхронизации, координировать, анализировать и оптимизировать выпуск продукции в рамках определенного производства.

Использование MES как специального промышленного софта, позволяет значительно повысить фондоотдачу технологического оборудования и, в результате, увеличить прибыль предприятия даже в условиях отсутствия дополнительных вложений в производство. MES-системы являются промышленными комплексными либо программными средствами, работающими в среде мастерских или производственных предприятий.

Основные функции MES:


Связующее звено между управлением и создает так называемый уровень MES (MES= Manufacturing Execution System).

  • Следить за состоянием и распределением ресурсов.
  • Оперативность и детальность планирования.
  • Диспетчеризация производства.
  • Управление документами.
  • Собирать и хранить данные.
  • Управлять персоналом.
  • Управлять качеством продукции.
  • Управлять производственными процессами.
  • Управлять техническим обслуживанием и ремонтом.
  • Прослеживать историю продукта.
  • Анализировать производительность.

Отличия MES систем от ERP

Чем отличаются MES системы от ERP-систем, и почему они находятся на разных уровнях информационной структуры? ERP-системы ориентированы на планирование выполнения заказов, т.е. отвечают на вопрос: когда и сколько продукции должно быть произведено ? MES системы фокусируются на вопросе: как в действительности продукция производится ? И оперируют более точной информацией о производственных процессах.

Информационно-управляющая структура производственного предприятия

Главное отличие MES от ERP заключается в том, что MES системы, оперируя исключительно производственной информацией, позволяют корректировать либо полностью перерассчитывать производственное расписание в течение рабочей смены столько раз, сколько это необходимо. В ERP системах по причине большого объема административно-хозяйственной и учетно-финансовой информации, которая, непосредственного влияния на производственный процесс не оказывает, перепланирование может осуществляться не чаще одного раза в сутки.

За счет быстрой реакции на происходящие события и применения математических методов компенсации отклонений от производственного расписания, MES системы позволяют оптимизировать производство и сделать его более рентабельным.

MES системы, собирая и обобщая данные, полученные от различных производственных систем и технологических линий (нижний уровень пирамиды), выводят на более высокий уровень организацию всей производственной деятельности, начиная от формирования производственного заказа и до отгрузки готовой продукции на склады.

MES системы реализуют связь в реальном времени производственных процессов с бизнес процессами предприятия и улучшают финансовые показатели предприятия (cash flow), включая повышение отдачи основных фондов, ускорение оборота денежных средств, снижение себестоимости, своевременность поставок, повышение размера прибыли и производительности.

MES системы формируют данные о текущих производственных показателях, включая реальную себестоимость продукции, необходимые для более качественного функционирования ERP систем.

Таким образом, MES - это связующее звено между ориентированными на финансово-хозяйственные операции ERP-системами и оперативной производственной деятельностью предприятия на уровне цеха, участка или производственной линии.

Ядро интеграции предприятия

Функции, выполняемые MES-системами, могут быть интегрированы с другими системами управления предприятием, такими как Планирование Цепочек Поставок (SCM), Продажи и Управления сервисом (SSM), Планирования Ресурсов Предприятия (ERP), Автоматизированные системы управления технологическими процессами (АСУТП), что обеспечит своевременное и всеобъемлющее наблюдение за критическими производственными процессами.

Оставьте свой комментарий!

MES-СИСТЕМЫ

MES-системы - это системы, которые работают на уровне цеха. Системы такого класса решают задачи синхронизации, координируют, анализируют и оптимизируют выпуск продукции в рамках какого-либо производства. MES-системы могут являться отличным дополнением к системам верхнего уровня - ERP-системам.

Определение MES-системы не дает четкого представления о ее предназначении, возросшие ее функции поглощают функции систем уровня АСУ ТП, систем диспетчеризации и т.д. Необходимо определить, что на сегодняшний день понимается под системами MES.

MES-cистема – это система по осуществлению управления производством, основная задача, которой осуществить связь всех бизнес-процессов компании с ее производственными и технологическими процессами, при этом оперативно предоставляя информацию.

В процессе производства возникают различные факторы, стремящиеся сойти с графика выпуска продукции: поломка и ремонт оборудования, срочный приоритетный заказ, переделка брака, больничные листы рабочих, не поставка в срок комплектующих, отсутствие технологической оснастки, а также многие другие непредвиденные обстоятельства. Обстановка на производстве меняется каждую минуту. Не смотря на это, необходимо всегда знать, как изменится конечный срок выполнения заказа, как наилучшим образом спланировать производство в сложившейся ситуации, для этого необходим новый перерасчет календарного плана. В MES-системе такой перерасчет может выполняться столько раз в день, сколько потребуется.

Одной из задач MES как раз и является коррекция возникающих отклонений за счет оптимального многократного перепланирования по реальному состоянию оборудования и заказов.

Неправильная загрузка станков для обработки различных изделий ведет к постоянному срыву сроков производства, режиму срочной работы на предприятии, переработке сотрудников, нехватке деталей на сборке узлов, перегрузу станков, динамическим проблемам, а также многим другим издержкам производства, мешающим вовремя произвести продукцию.

Задачей MES является оперативно-календарное планирование, с помощью которого загрузка станков будет осуществлена максимально выгодным образом. Все изделия будут выполнены в максимальные сроки, при этом все комплектующие будут гарантированно находиться на складе к моменту сборки изделий.

В момент сборки изделий или запуска той или иной операции не редко выясняется, что некоторые детали или оснастка отсутствует в наличии, зато менее необходимые детали или оснастка находятся в переизбытке. При использовании MES-систем подобная ситуация просто не может возникнуть.

Диспетчеризация производства позволит в режиме реального времени наглядно оценить загрузку станков, сделать основные отчеты, мгновенно реагировать на различные ситуации.

Используя точные текущие данные, MES регулирует, инициирует и протоколирует работу предприятия по мере возникновения событий. Набор функций MES позволяет управлять производственными операциями от момента поступления заказа на производстве до готового продукта. MES предоставляет наиболее важную информацию о производственной деятельности для всей организации и обо всей цепочке поставок посредством двустороннего взаимодействия.

Именно использование оперативной информации отличает MES от ERP систем. В MES-системах модель производства определяется на стыке возможностей оборудования, доступности материалов и персонала. Любая MES должна ответить на следующие вопросы:

    Что должно быть произведено?

    Когда что надо производить?

    С помощью чего надо производить?

    Когда, как и что было уже произведено?

Используя данные уровней планирования и контроля, MES-системы управляют текущей производственной деятельностью в соответствии с поступающими заказами, требованиями конструкторской и технологической документации, актуальным состоянием оборудования, преследуя при этом цели максимальной эффективности и минимальной стоимости выполнения производственных процессов.

За счет быстрой реакции на происходящие события и применения математических методов компенсации отклонений от производственного расписания, MES системы позволяют оптимизировать производство и сделать его более рентабельным.

Диаграмма Ганта

Существуют разные подходы к планированию времени (тайм-менеджменту). Наиболее инновационной идеей здесь является диаграмма Ганта. Данная диаграмма состоит из полос, ориентированных вдоль оси времени. Каждая полоса представляет отдельную задачу в составе проекта, её концы – это моменты начала и завершения работы, её протяженность – длительность работы. Вертикальная ось является перечнем задач.


Первый формат диаграммы был разработан еще в 1910 г. Генри Л. Гантом (американский инженер, механик и специалист по менеджменту). Генри Гант еще изначально применял графическую информацию, отчитываясь перед своим начальством. В дальнейшем появились, прославившие его диаграммы Ганта. Многие склонны считать, что Гант стал одним из основоположников принципиально новых, более гуманных принципов производства и управления; ему же приписываются некоторые необычные идеи по правильной постановке задач и эффективной мотивации персонала.

Результаты внедрения MES

По данным различных компаний, можно выделить следующие основные результаты внедрения MES:

1. Увеличение экономической эффективности деятельности предприятия;
2. Увеличение скорости прохождения заказов до 40-50%
3. Повышение коэффициента загрузки станков на 30-40%
4. Снижение продолжительности цикла производства в среднем на 45%;
5. Снижение времени освоения новой продукции в среднем на 27%;
6. Сокращение объемов брака в среднем на 18%;
7. Сокращение объема незавершенной продукции на 25-30%;
8. Повышение надежности исполнения заказов в заданные сроки на 60%;
9. Снижение объема ненужной бумажной документации в среднем на 56%;
10. Повышение контроля выполнения технологических и производственных процессов;
11. Повышение прозрачности бизнес-процессов в части движения материальных потоков;
12. Качественное улучшение производственных показателей.

Внедрение MES-систем предоставит и множество других преимуществ, необходимых для достижения максимальной эффективности производства.

Снижение различных издержек, получение максимальной выгоды от уже существующих возможностей предприятия сегодня возможно только путем автоматизации планирования и управления производством - путем внедрения MES-систем.

Конечно, достижение успеха в конкурентной борьбе возможно и путем внедрения прогрессивных технологий, станков, инструментов, высокоскоростной обработки и т.д., но при относительно равных условиях большинства предприятий, достижение успеха становится возможным только путем грамотного и оперативного планирования и управления производством. Именно здесь находятся большие резервы по оптимизации производства и достижения максимального экономического эффекта.

MES – это принципиально важная функция, позволяющая создавать на производственном предприятии действительно эффективную систему управления. MES становится одним из ключевых элементов общекорпоративных систем современных предприятий.

Функции исполнительных систем производства (MES)

MES (Manufacturing Execution System) – исполнительная система производства. Системы такого класса решают задачи синхронизации, координации, анализа и оптимизации выпуска продукции в рамках какого-либо производства.

Существует несколько формулировок определения MES систем:

1 MES – это информационная и коммуникационная система производственной среды предприятия.

2 MES – автоматизированная система управления и оптимизации производственной деятельности, которая в режиме реального времени инициирует, отслеживает, оптимизирует и документирует производственные процессы от начала выполнения заказа до выпуска готовой продукции.

3 MES – интегрированная информационно-вычислительная система, объединяющая инструменты и методы управления производством в реальном времени .

Отличия MES систем от ERP заключаются в следующем: ERP-системы ориентированы на планирование выполнения заказов, то есть отвечают на вопрос: когда и сколько продукции должно быть произведено? MES системы фокусируются на вопросе: как в действительности продукция производится? Они оперируют более точной информацией о производственных процессах.

MES системы, оперируя исключительно производственной информацией, позволяют корректировать производственное расписание в течение рабочей смены столько раз, сколько это необходимо . За счет быстрой реакции на происходящие события и применения математических методов компенсации отклонений от производственного расписания, MES системы позволяют оптимизировать производство и сделать его более рентабельным. Структура такой организации производства показана на рисунке 1.5.

MES системы реализуют связь в реальном времени производственных процессов с бизнес процессами предприятия и улучшают финансовые показатели предприятия, включая повышение отдачи основных фондов, ускорение оборота денежных средств, снижение себестоимости, своевременность поставок, повышение размера прибыли и производительности.

Таким образом, MES – это связующее звено между ориентированными на финансово-хозяйственные операции ERP-системами и оперативной производственной деятельностью предприятия на уровне цеха, участка или производственной линии.

Рисунок 1.5 – Структурная схема организации производства с MES-системой

Функции, выполняемые MES-системами, могут быть интегрированы с другими системами управления предприятием (рис. 1.6) :

ERP – планирования ресурсов предприятия;

SCM (Supply Chain Management) – управление цепочками поставок;

SCADA – автоматизация технологических процессов;

CAD (Computer-Aided Design) – автоматизированное проектирование изделий;

CAPP (Computer-Aided Process Planning) – автоматизированная разработка маршрутной технологии;

ABC (Activity Based Costing) – функционально-стоимостной анализ производственной деятельности;

EAM (Enterprise Asset Management) – управление основными фондами предприятия;

CRM (Customer Relationship Management) – управление взаимоотношениями с клиентами.

Рисунок 1.6 – MES, как ядро интеграции систем

Используя данные уровней планирования и контроля, MES системы управляют текущей производственной деятельностью в соответствии с поступающими заказами, требованиями конструкторской и технологической документации, актуальным состоянием оборудования, преследуя при этом цели максимальной эффективности и минимальной стоимости выполнения производственных процессов.

Международная ассоциация производителей систем управления производством (MESA) определила 11 типовых функций MES-систем :

· контроль состояния и распределение ресурсов (RAS) – управление ресурсами производства: технологическим оборудованием, материалами, персоналом, документацией, инструментами, методиками работ;

· оперативное / детальное планирование (ODS) – расчет производственных расписаний, основанный на приоритетах, атрибутах, характеристиках и способах, связанных со спецификой изделий и технологией производства;

· диспетчеризация производства (DPU) управление потоком изготавливаемых деталей по операциям, заказам, партиям, сериям, посредством рабочих нарядов;

· управление документами (DOC) – контроль содержания и прохождения документов, сопровождающих изготовление продукции, ведение плановой и отчетной цеховой документации;

· сбор и хранение данных (DCA) взаимодействие информационных подсистем в целях получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия;

· управление персоналом (LM) обеспечение возможности управления персоналом в ежеминутном режиме;

· управление качеством продукции (QM) анализ данных измерений качества продукции в режиме реального времени на основе информации поступающей с производственного уровня, обеспечение должного контроля качества, выявление критических точек и проблем, требующих особого внимания;

· управление производственными процессами (PM) – мониторинг производственных процессов, автоматическая корректировка либо диалоговая поддержка решений оператора;

· управление техобслуживанием и ремонтом (MM) – управление техническим обслуживанием, плановым и оперативным ремонтом оборудования и инструментов для обеспечения их эксплуатационной готовности;

· отслеживание истории продукта (PTG) визуализация информации о месте и времени выполнения работ по каждому изделию. Информация может включать отчеты: об исполнителях, технологических маршрутах, комплектующих, материалах, партионных и серийных номерах, произведенных переделках, текущих условиях производства и т. п.;

· анализ производительности (PA) предоставление подробных отчетов о реальных результатах производственных операций, а также сравнение плановых и фактических показателей.

В настоящее время на рынке существует много различных программных продуктов. Их различие может быть связано с критериями составления производственного расписания. Нередко эти критерии скрываются. Поэтому принятие той или иной системы должно осуществляться с определенной осторожностью.


1.5 Функции систем управления технологического уровня (SCADA и PLC)

К функциям систем SCADA относятся:

· сбор первичной информации от датчиков;

· хранение, обработка и визуализация данных;

· регистрация аварийных сигналов, выдача сообщений о неисправностях и аварийных ситуациях;

· связь с корпоративной информационной сетью;

· формирование отчетов.

SCADA-системы состоят из терминальных компонентов, диспетчерских пунктов и каналов связи. Они различаются типами поддерживаемых контроллеров и способами связи с ними, операционной средой, типами алармов, числом трендов (характеристик состояний контролируемого процесса), особенностями человеко-машинного интерфейса (HMI) и др. Алармы фиксируются при выходе значений контролируемых параметров или скоростей их изменения за границы допустимых диапазонов.

В SCADA-системах используются операционные системы реального времени. К этим системам предъявляется ряд специфических требований. Основными требованиями являются: высокая скорость реакции на запросы внешних устройств, устойчивость систем, то есть способность работы без зависаний, а также экономное использование имеющихся в наличии системных ресурсов.

К операционным системам реального времени относятся:

· многозадачная, многопользовательская, UNIX-совместимая система LynxOS;

· популярная ОС для встраиваемых приложений OS-9 (Unix-подобная RTOS от Microware для процессора Motorola 6809);

· модульная и легко модифицируемая система QNX;

· ОС Windows NT, дополненная, например, средой RTX компании VenturCom;

· система планирования и управления задачами VxWorks, которая вместе с инструментальной системой Tornado является кросс-системой для разработки прикладного ПО.

Современные SCADA-системы не ограничивают выбор аппаратуры нижнего уровня – RTU, так как предоставляют большой набор драйверов или серверов ввода/вывода и имеют хорошо развитые средства для создания собственных драйверов новых устройств нижнего уровня. Драйверы разрабатываются на основе стандартных языков программирования. Так, в системе TRACE MODE спецификации доступа к ядру системы поставляются фирмой-разработчиком в штатном комплекте. Для SCADA FactoryLink, InTouch при создании драйверов необходимы специальные пакеты.

Для подсоединения драйверов ввода/вывода к SCADA-системе используются два механизма: стандартный динамический обмен данными (Dynamic Data Exchange – DDE) и обмен по внутреннему фирменному протоколу. Из-за низкой производительности механизма DDE компания Microsoft предложила использовать технологию OLE (Object Linking and Embedding – включение и встраивание объектов). Механизм OLE поддерживается в SCADA-системах RSView, FIX, InTouch, Factory Link и др. На базе OLE появился новый стандарт OPC (OLE for Process Control), ориентированный на рынок промышленной автоматизации. Новый стандарт позволяет объединить на уровне объектов различные системы автоматизации и устранить необходимость использования специализированного оборудования и оригинальных драйверов.

С точки зрения SCADA-систем, применение OPC-серверов означает введение стандартов обмена данными с технологическими устройствами. На рынке появились инструментальные пакеты для написания OPC-компонентов, например, OPC-Toolkits фирмы Factory Soft Inc., включающий OPC Server Toolkit, OPC Client Toolkit [см., например, «SCADA-системы, или муки выбора». Надежда Куцевич, а также ЗАО РТСофт (URL: www.rtsoft.ru)].

В настоящее время получили распространение десятки систем SCADA. В Украине широко внедряются следующие системы SCADA:

1 Система Citect австралийской компании Ci Technology, работающая в среде Windows (http://www.promsat.com/page/11/). Это масштабируемая клиент-серверная система со встроенным резервированием, обеспечивающим повышение надежности. Citect состоит из пяти подсистем – ввода-вывода, визуализации, оповещения (алармов), трендов и отчетов. Подсистемы могут быть распределены по разным узлам сети. В Citect используется оригинальный язык программирования Cicode.

2 TRACE MODE – это одна из самых покупаемых в России SCADA-систем, предназначенная для разработки крупных распределенных АСУТП широкого назначения (http://www.tracemode.ua/). TRACE MODE состоит из инструментальной системы и исполнительных (run-time) модулей. При помощи инструментальной системы осуществляется разработка АСУ, а исполнительные модули служат для запуска в реальном времени проектов, разработанных в инструментальной системе TRACE MODE.

3 WinCC – система фирмы SIEMENS (http://www.siemens.com.ua/). На основе WinCC могут создаваться как простейшие системы человеко-машинного интерфейса с одной станцией оператора, так и мощные многопользовательские системы, включающие в свой состав десятки станций. WinCC поддерживает стандартные интерфейсы OLE, ODBC, OLE и SQL, что обеспечивает её открытость и использование в сочетании с любым другим программным обеспечением.

1.6 Основные направления в обеспечении интеграции систем автоматизации

В автоматизированных системах управления технологическими процессами (АСУТП), часто называемых системами промышленной автоматизации, можно выделить два иерархических уровня.

На верхнем (диспетчерском) уровне АСУТП осуществляются сбор и обработка данных о состоянии оборудования и протекании производственных процессов для принятия решений по загрузке станков и выполнению технологических маршрутов. Эти функции возложены на систему диспетчерского управления и сбора данных SCADA (Supervisory Control and Data Acquisition). Кроме диспетчерских функций, система SCADA выполняет роль инструментальной системы разработки ПО для промышленных систем компьютерной автоматизации.

На нижнем уровне управления технологическим оборудованием (на уровне контроллеров) в АСУТП выполняются запуск, тестирование, сигнализация о неисправностях, а также выработка управляющих воздействий для рабочих технологического оборудования. Для этого в составе технологического оборудования используются системы управления на базе программируемых контроллеров и промышленных компьютеров. Поэтому системы промышленной автоматизации часто называют встроенными системами ECS (Embedded Computing System).

Техническое обеспечение АСУТП распределено по участкам и связано друг с другом с помощью промышленных (полевых) шин, как показано на рисунке 1.7.

Рисунок 1.7 – Архитектура АСУТП

На верхнем уровне иерархии шин осуществляется связь компьютеров системы SCADA и серверов баз данных. Здесь используются технологии локальных вычислительных сетей Industrial Ethernet.

Для связи компьютеров с высокоскоростными периферийными устройствами служат шины Infiniband (межсерверные соединения), Fiber Channel (в последнее время заменяется более дешевым соединением на базе Gigabit Ethernet).

Для подключения периферийных устройств без собственного источника питания применяется USB, а для подключения аудио и видео мультимедийных устройств – FireWire 1394. Связь с низкоскоростными устройствами осуществляют через интерфейсы RS-232, RS-422 (симплексная передача с соединением «точка-точка»), а также RS-485 (полудуплексная многоточечная передача данных).

На уровне контроллеров обычно применяют промышленные сети Fieldbus (дословный перевод – полевая шина). Соединение модулей контроллеров, датчиков, измерительного и другого оборудования в пределах одного функционального узла (например, соединение слотов в крейте или стойке) выполняется посредством магистрально-модульных параллельных шин, таких как VME-bus, Compact PCI, а также последовательных шин типа Infiniband или Compact PCI Express.

Для создания единой информационной системы необходимо решить две задачи.

1 Применить горизонтальную интеграцию информационного взаимодействия между существующими автономными подсистемами. Для этого необходимо:

· на технологическом уровне объединить контроллерное оборудование промышленными шинами, обеспечить взаимодействие SCADA-приложений, которые уже имеют данные контроллерного уровня, с использованием механизмов COM (DCOM), DDE (NetDDE);

· осуществить взаимодействие стандартных программ на базе OLEAutomation-объектов, SQL-запросов, DDE-протокола;

· применить для модификации текущих записей в таблицах баз данных (добавление, удаление) язык SQL-запросов (драйверы ODBC, OLE DB).

Примечание. Данные, которые поступают с технологического уровня, отличаются тем, что быстро изменяются во времени по сравнению
с бизнес-параметрами. Поэтому их объем, получаемый в единицу времени, огромен. Из этого следует, что подсистема, интегрирующая технологические данные, должна обеспечивать скоростной сбор данных, сжатие данных при сохранении, а также поддержку каналов обмена по вышеуказанным протоколам. Причём интегрирующие подсистемы должны не только поддерживать обмен с технологическим уровнем, но и обеспечивать передачу технологических данных на уровень ERP-систем.

2 Применить вертикальную интеграцию . В общем случае целью вертикальной интеграции является передача технологических данных
на уровень бизнес-приложений.

Для создания вертикальной интеграции необходимо:

· обеспечить хранение оперативных данных реального времени (realtime-данные) в объеме, оптимальном для конкретного предприятия;

· сформировать данные, отражающие динамику и последовательность технологического процесса производства продукта от сырья до товара (product-данные). Программное обеспечение, ориентированное на решение таких задач, относится к классу MES (Manufacturing Executive Systems), или систем управления производством. В качестве входных данных в MES-системы поступают параметры сырья, выходными параметрами является полная характеристика (например, технологический паспорт) полученного товара;

· сформировать данные, отражающие структуру и состояние фондов (активов) предприятия (maintenance-данные). Программное обеспечение, ориентированное на отслеживание и сопровождение основных фондов, относится к классу EAM -cистем (Enterprise Assets Management).

Следует заметить, что realtime-данные часто являются основой формирования количественных значений product- и maintenance-данных (данные производства и обслуживания).


2 ОСОБЕННОСТИ СОВРЕМЕННЫХ ПРОГРАММИРУЕМЫХ ЛОГИЧЕСКИХ КОНТРОЛЛЕРОВ (ПЛК)

29 апреля 2012 в 20:13

Как один мужик MES-систему купить хотел

  • ERP-системы

Это было примерно месяц назад. К нам в офис приехал Василий. Он топ-менеджер компании, производящей оборудование для театральных сцен. С порога заявил, что ему нужна MES-система или APS-система и что он еще не до конца решил, какая из них. «Почему именно MES-система?» - спросил я.

Я уже несколько месяцев занимаюсь изучением вопроса, связанного с решением наших производственных проблем. Встречался с представителями нескольких компаний, производящих MES и APS системы. Они сказали, что их системы как раз и решают наши проблемы. Причем мне сказали, что только такие системы и способны решить наши проблемы. У вас тоже MES система?

Нет, у нас ERP-система. Да это не важно, забудьте про эти всякие аббревиатуры. Давайте просто поговорим о ваших проблемах.


- А вы думаете, ваша система способна их решить?

Василий, проблемы решает менеджмент компании. А ПО только помогает это сделать. Но само по себе ПО проблем не решает. Я думаю, что некоторые ваши проблемы решаются и без ПО, а некоторые может помочь решить наше ПО. В чем, по-вашему, заключаются ваши проблемы?

Все просто: мы никогда ничего не делаем в срок. Это наша главная болячка. Да и куча других. Например, очень часто при сборке какого-то узла, вдруг выясняется, что необходимых комплектующих для него просто нет. А других комплектующих завались.

И эту проблему можно решить при помощи MES-системы?

Мне показывали презентацию. Мне очень понравилось. Дело в том, что в MES-системе можно все заранее распланировать и если делать все так, как запланировано, то все будет хорошо. Там графики есть, все очень наглядно.

Ключевая фраза «делать, как запланировано», я не думаю, что у вас это получится. Как вы думаете, 50 лет назад были MES-системы?

Конечно, нет.

Это означает, что раньше абсолютно все компании никогда ничего не делали в срок? И форд, и тойота и тысячи других производителей, некоторые из которых работают уже не одно столетие. По словам людей, презентовавших вам MES-систему, по-другому эту проблему не решить.

Я не знаю, не думал над этим.

Кстати, вы не спрашивали у них, как эта система будет интегрирована во все остальные бизнес-процессы компании? Ну, там, я не знаю, закупки, продажи, склад, финансы и т.д.

Хм, да, интересно. Мы не обсуждали этот вопрос, я не знаю…спрошу.

Что вы производите?

Лебедки. Большие лебедки, не для автомобилей, а посерьезней.

Хорошо. Если все комплектующие на складе, сколько нужно времени на производство одной лебедки?

Эээ, думаю, часов пять.

А если я у вас прямо сейчас закажу лебедку, то когда я ее получу?

Ммм, думаю, что дней через десять точно.

Странно. У вас весьма неплохое соотношение чистой трудоемкости и общего срока. Что-то около 15-ти. Это прекрасное соотношение для нашей страны. На западе, а особенно в Японии, оно конечно значительно меньше, но в России это может быть и сотни. А у вас пятнадцать. Очень странно… Ну, хорошо, давайте разбираться дальше. Какую комплектующую нужно закупать дольше всего?

Двигатель.

Сколько нужно времени на его закупку?

Может быть и сорок дней.

Вы держите их на складе?

Секундочку. Откуда тогда десять дней?

Василий в замешательстве.

Я не знаю, мне всегда казалось, что десяти дней нам точно достаточно.
Тут мне становится понятно, что контрольное соотношение у них на самом деле «традиционное», что-то около сотни.

Остальные комплектующие как быстро можно купить?

Быстро. День-два.

Ну, вот вам и первая ваша проблема. Она называется «двигатель». Почему вы не держите на складе небольшой буфер движков?

Мы думали над этим. Но не получается. Дело в том, что они к нам поступают с муфтами. Муфты очень разные. Двигателей примерно с десяток разных, а муфт гораздо больше. Поэтому комбинаций получается очень много. Придется на складе держать огромное количество этих двигателей.

Муфты вы можете сами монтировать?

Да, это не сложно. У нас же производство.

Почему вы этого не делаете?

Эээ, я не знаю. Так всегда было.

Я думаю, решение проблемы сорока дней лежит примерно в этом месте. Подумайте о монтаже муфт самостоятельно и держите небольшой буфер двигателей на складе. Управляйте буфером по принципу «закажи, что потратил». Взял двигатель – закажи его у поставщика. Это первое. Второе. Никогда не приступайте к производственному заданию, если не выполнено предыдущее задание. Тогда вы избавитесь от проблемы под названием «когда мы что-то делаем, обнаруживаем отсутствие комплектующих». Правильно выстраивайте очередность заданий, всегда делайте наиболее горящие.

Не знаю - не знаю. Я поговорю с шефом, но он загорелся MES-системой. Там очень здорово все планируется. Шеф хочет утвердить план и не думать после этого о срыве сроков.

Это, разумеется, его право. А если что-то пойдет не так?

Не понял. Что значит не так?

Ну, смотрите. У вас есть люди разной квалификации, есть разные станки. Казалось бы все сложно. MES (и уж тем более APS) система все это учитывает при планировании. Так?

Да, я сам видел на презентации.

А теперь простая ситуация. Не дай Бог конечно, но вот представим себе завтрашний день, 08-00. Один из ключевых инженеров (слесарей) по дороге на работу падает и ломает ногу. Без него одно из изделий, которое как назло стоит в плане на сегодня, сделать нельзя. Что делать?

Нууу, я не знаю. MES-системы умеют все быстро перепланировать.

Не сомневаюсь. Но планируют не MES-системы, а менеджмент. Вы ведь сами сказали, что план утверждает шеф. Но он к сожалению сейчас в отпуске…Делать что будете?

Ну, я точно не знаю, не думал над этим. Я думаю, начальник производства примет решение, что именно сейчас нужно производить.

Василий, я привел вам один самых простых случаев внешнего воздействия на ваш план производства. На самом деле таких воздействий гораздо больше и они могут быть значительно сложнее. И случаться они будут ежедневно, к сожалению. В результате ваш начальник производства будет каждый день принимать «волевые решения». А через какое-то время вы будете строить планы только потому, что «всандалили кучу денег и не выбрасывать же».

Ну и что вы предлагаете?

Вы читали «цель1» Голдратта?

Нет, а кто это?

Голдратт - потрясающий мужик, который придумал гениальную (как и все простое) систему менеджмента. Давайте так. Вы прочитаете его, а потом мы с вами еще раз встретимся и просто поговорим. Очень вам его рекомендую. У меня в компании все процессы строятся по этой теории. За последние два года компания выросла раза в три.

А вот еще вопрос. Ваша система умеет определять положение автомобиля?

Господи, зачем вам это?

Понимаете, наш шеф очень часто вмешивается в процесс и звонит водителям, когда те уже загрузились и уехали, находит ближайшего, возвращает его назад, тот разгружается и загружается срочным заказом, потому что кто-то там шефу позвонил. Да и на производстве такое случается часто, что шеф вмешивается и требует производить что-то другое…

Ну, вот вам еще одна ваша проблема. Она называется «шеф». Вы мне поведали о некоторых своих проблемах и вместо того, чтобы пытаться их решить, вы хотите залепить их пластилином.
Потом я на доске нарисовал ему очень простые производственные схемы, но это тема для отдельного поста.
И он в задумчивости уехал.

Буквально через несколько дней после этой встречи я улетел в Новосибирск. Точнее в Академгородок, а точнее в Технопарк Академгородка. Все производственные процессы в котором построены на базе теории ограничений Голдрата. Это потрясающее зрелище.

Подробности той поездки у меня в