Бизнес

Установка производства серы из технического сероводорода. Где применяется сера? Сера в резиновой отрасли

Халькогены — группа элементов, к которой относится сера. Ее химический знак — S — первая буква латинского названия Sulfur. Состав простого вещества записывают с помощью этого символа без индекса. Рассмотрим основные моменты, касающиеся строения, свойств, получения и применения данного элемента. Характеристика серы будет представлена максимально подробно.

Общие признаки и различия халькогенов

Сера относится к подгруппе кислорода. Это 16-я группа в современной длиннопериодной форме изображения периодической системы (ПС). Устаревший вариант номера и индекса — VIA. Названия химических элементов группы, химические знаки:

  • кислород (О);
  • сера (S);
  • селен (Se);
  • теллур (Te);
  • полоний (Po).

Внешняя электронная оболочка вышеперечисленных элементов устроена одинаково. Всего она содержит 6 которые могут участвовать в образовании химической связи с другими атомами. Водородные соединения отвечают составу H 2 R, например, H 2 S — сероводород. Названия химических элементов, образующих с кислородом соединения двух типов: сера, селен и теллур. Общие формулы оксидов этих элементов — RO 2 , RO 3 .

Халькогенам соответствуют простые вещества, которые значительно отличаются по физическим своствам. Наиболее распространенные в земной коре из всех халькогенов — кислород и сера. Первый элемент образует два газа, второй — твердые вещества. Полоний — радиоактивный элемент — редко встречается в земной коре. В группе от кислорода до полония неметаллические свойства убывают и возрастают металлические. Например, сера — типичный неметалл, а теллур обладает металлическим блеском и электропроводностью.

Элемент № 16 периодической системы Д.И. Менделеева

Относительная атомная масса серы — 32,064. Из природных изотопов наиболее распространен 32 S (более 95% по массе). Встречаются в меньших количествах нуклиды с атомной массой 33, 34 и 36. Характеристика серы по положению в ПС и строению атома:

  • порядковый номер — 16;
  • заряд ядра атома равен +16;
  • радиус атома — 0,104 нм;
  • энергия ионизации —10,36 эВ;
  • относительная электроотрицательность — 2,6;
  • степень окисления в соединениях — +6, +4, +2, -2;
  • валентности — II(-),II(+), IV(+), VI (+).

Сера находится в третьем периоде; электроны в атоме располагаются на трех энергетических уровнях: на первом — 2, на втором — 8, на третьем — 6. Валентными являются все внешние электроны. При взаимодействии с более электроотрицательными элементами сера отдает 4 или 6 электронов, приобретая типичные степени окисления +6, +4. В реакциях с водородом и металлами атом притягивает недостающие 2 электрона до заполнения октета и достижения устойчивого состояния. в этом случае понижается до -2.

Физические свойства ромбической и моноклинной аллотропных форм

При обычных условиях атомы серы соединяются между собой под углом в устойчивые цепи. Они могут быть замкнуты в кольца, что позволяет говорить о существовании циклических молекул серы. Состав их отражают формулы S 6 и S 8 .

Характеристика серы должна быть дополнена описанием различий между аллотропными модификациями, обладающими разными физическими свойствами.

Ромбическая, или α-сера — наиболее стабильная кристаллическая форма. Это ярко-желтые кристаллы, состоящие из молекул S 8 . Плотность ромбической серы составляет 2,07 г/см3. Светло-желтые кристаллы моноклинной формы образованы β-серой с плотностью 1,96 г/см3. Температура кипения достигает 444,5°С.

Получение аморфной серы

Какого цвета сера в пластическом состоянии? Это темно-коричневая масса, совершенно не похожая на желтый порошок или кристаллы. Для ее получения нужно расплавить ромбическую или моноклинную серу. При температуре выше 110°С образуется жидкость, при дальнейшем нагревании она темнеет, при 200°С становится густой и вязкой. Если быстро вылить расплавленную серу в холодную воду, то она застынет с образованием зигзагообразных цепей, состав которых отражает формула S n .

Растворимость серы

Некоторые модификации в сероуглероде, бензоле, толуоле и жидком аммиаке. Если медленно охладить органические растворы, то образуются игольчатые кристаллы моноклинной серы. При испарении жидкостей выделяются прозрачные лимонно-желтые кристаллы ромбической серы. Они хрупкие, их легко можно смолоть в порошок. Сера не растворяется в воде. Кристаллы опускаются на дно сосуда, а порошок может плавать на поверхности (не смачивается).

Химические свойства

В реакциях проявляются типичные неметаллические свойства элемента № 16:

  • сера окисляет металлы и водород, восстанавливается до иона S 2- ;
  • при сгорании на воздухе и кислороде образуются ди- и триоксид серы, которые являются ангидридами кислот;
  • в реакции с другим более электроотрицательным элементом — фтором — сера тоже теряет свои электроны (окисляется).

Свободная сера в природе

По распространенности в земной коре сера находится на 15 месте среди химических элементов. Среднее содержание атомов S в составляет 0,05% от массы земной коры.

Какого цвета сера в природе (самородная)? Это светло-желтый порошок с характерным запахом или желтые кристаллы, обладающие стеклянным блеском. Залежи в виде россыпи, кристаллические пласты серы встречаются в районах древнего и современного вулканизма: в Италии, Польше, Средней Азии, Японии, Мексике, США. Нередко при добыче находят красивые друзы и гигантские одиночные кристаллы.

Сероводород и оксиды в природе

В районах вулканизма на поверхность выходят газообразные соединения серы. Черное море на глубине свыше 200 м является безжизненным из-за выделения сероводорода H 2 S. Формула оксида серы двухвалентной — SO 2 , трехвалентной — SO 3 . Перечисленные газообразные соединения присутствуют в составе некоторых месторождений нефти, газа, природных вод. Сера входит в состав каменного угля. Она необходима для построения многих органических соединений. При гниении белков куриного яйца выделяется сероводород, поэтому часто говорят, что у этого газа запах тухлых яиц. Сера относится к биогенным элементам, она необходима для роста и развития человека, животных и растений.

Значение природных сульфидов и сульфатов

Характеристика серы будет неполной, если не сказать, что элемент встречается не только в виде простого вещества и оксидов. Наиболее распространенные природные соединения — это соли сероводородной и серной кислот. Сульфиды меди, железа, цинка, ртути, свинца встречаются в составе минералов сфалерита, киновари и галенита. Из сульфатов можно назвать натриевую, кальциевую, бариевую и магниевую соли, которые образуют в природе минералы и горные породы (мирабилит, гипс, селенит, барит, кизерит, эпсомит). Все эти соединения находят применение в разных отраслях хозяйства, используются как сырье для промышленной переработки, удобрения, стройматериалы. Велико медицинское значение некоторых кристаллогидратов.

Получение

Вещество желтого цвета в свободном состоянии встречается в природе на разной глубине. При необходимости серу выплавляют из горных пород, не поднимая их на поверхность, а нагнетая на глубину перегретый и Еще один метод связан с возгонкой из раздробленных горных пород в специальных печах. Другие способы предусматривают растворение сероуглеродом или флотацию.

Потребности промышленности в сере велики, поэтому для получения элементарного вещества используются его соединения. В сероводороде и сульфидах сера находится в восстановленной форме. Степень окисления элемента равна -2. Проводят окисление серы, повышая это значение до 0. Например, по методу Леблана сульфат натрия восстанавливают углем до сульфида. Затем из него получают сульфид кальция, обрабатывают его углекислым газом и парами воды. Образующийся сероводород окисляют кислородом воздуха в присутствии катализатора: 2H 2 S + O 2 = 2H 2 O +2S. Определение серы, полученной разными способами, порой дает низкие показатели чистоты. Рафинирование или очистку проводят дистилляцией, ректификацией, обработкой смесями кислот.

Применение серы в современной промышленности

Сера гранулированная идет на различные производственные нужды:

  1. Получение серной кислоты в химической промышленности.
  2. Производство сульфитов и сульфатов.
  3. Выпуск препаратов для подкормок растений, борьбы с болезнями и вредителями сельскохозяйственных культур.
  4. Серосодержащие руды на горно-химических комбинатах перерабатывают для получения цветных металлов. Сопутствующим производством является сернокислотное.
  5. Введение в состав некоторых сортов сталей для придания особых свойств.
  6. Благодаря получают резину.
  7. Производство спичек, пиротехники, взрывчатых веществ.
  8. Использование для приготовления красок, пигментов, искусственных волокон.
  9. Отбеливание тканей.

Токсичность серы и ее соединений

Пылевидные частицы, обладающие неприятным запахом, раздражают слизистые оболочки носовой полости и дыхательных путей, глаза, кожу. Но токсичность элементарной серы считается не особенно высокой. Вдыхание сероводорода и диоксида может вызвать тяжелое отравление.

Если при обжиге серосодержащих руд на металлургических комбинатах отходящие газы не улавливают, то они поступают в атмосферу. Соединяясь с каплями и парами воды, оксиды серы и азота дают начало так называемым кислотным дождям.

Сера и ее соединения в сельском хозяйстве

Растения поглощают сульфат-ионы вместе с почвенным раствором. Снижение содержания серы ведет к замедлению метаболизма аминокислот и белков в зеленых клетках. Поэтому сульфаты применяют для подкормок сельскохозяйственных культур.

Для дезинфекции птичников, подвалов, овощехранилищ простое вещество сжигают или обрабатывают помещения современными серосодержащими препаратами. Оксид серы обладает антимикробными свойствами, что издавна находит применение в производстве вин, при хранении овощей и фруктов. Препараты серы используют в качестве пестицидов для борьбы с болезнями и вредителями сельскохозяйственных культур (мучнистой росой и паутинным клещом).

Применение в медицине

Большое значение изучению лечебных свойств желтого порошка придавали великие врачеватели древности Авиценна и Парацельс. Позже было установлено, что человек, не получающий достаточное количество серы с пищей, слабеет, испытывает проблемы со здоровьем (к ним относятся зуд и шелушение кожи, ослабление волос и ногтей). Дело в том, что без серы нарушается синтез аминокислот, кератина, биохимических процессов в организме.

Медицинская сера включена в состав мазей для лечения заболеваний кожи: акне, экземы, псориаза, аллергии, себореи. Ванны с серой могут облегчить боли при ревматизме и подагре. Для лучшего усвоения организмом созданы водорастворимые серосодержащие препараты. Это не желтый порошок, а мелкокристаллическое вещество белого цвета. При наружном использовании этого соединения его вводят в состав косметического средства для ухода за кожей.

Гипс давно применяется при иммобилизации травмированных частей тела человека. назначают как слабительное лекарство. Магнезия понижает артериальное давление, что используется в лечении гипертонии.

Сера в истории

Еще в глубокой древности неметаллическое вещество желтого цвета привлекало внимание человека. Но только в 1789 году великий химик Лавуазье установил, что порошок и кристаллы, найденные в природе, состоят из атомов серы. Считалось, что неприятный запах, возникающий при ее сжигании, отпугивает всякую нечисть. Формула оксида серы, который получается при горении, — SO 2 (диоксид). Это токсичный газ, его вдыхание опасно для здоровья. Несколько случаев массового вымирания людей целыми деревнями на побережьях, в низинах ученые объясняют выделением из земли либо воды сероводорода или диоксида серы.

Изобретение черного пороха усилило интерес к желтым кристаллам со стороны военных. Многие битвы были выиграны благодаря умению мастеров соединять серу с другими веществами в процессе изготовления Важнейшее соединение — серную кислоту — тоже научились применять очень давно. В средние века это вещество называли купоросным маслом, а соли — купоросами. Медный купорос CuSO 4 и железный купорос FeSO 4 до сих пор не утратили своего значения в промышленности и сельском хозяйстве.

Серы (S) — химический элемент группы 16 периодической системы элементов с атомным номером 16, простое вещество которого сера — неметалл, желтая кристаллическое вещество. Встречается в природе в самородном состоянии и в виде сульфидов тяжелых металлов (пирита и других). Серу применяют преимущественно в химической промышленности для производства серной кислоты, синтетического волокна, сернистых красителей, дымного пороха, в резиновой промышленности, а также в сельском хозяйстве, фармацевтике и др.

Благодаря способности создавать дисульфидные связи Сера играет важную роль в составе белков.

История

Элементарную природу серы установил Антуан Лавуазье в своих опытах по сжиганию.

Общая характеристика

Серы имеет атомную массу 32,06. В природе существует 4 стабильных изотопа с массовыми числами 32-34 и 36. Сера принадлежит к халькогенов, по новой классификации в шестнадцатом, а по старой к VI группы элементов периодической таблицы. Сера является неметаллов.

Известны несколько аллотропных форм серы. При обычных условиях стабильной является ромбическая сера — бледно-желтого цвета, с плотностью 2070 кг / м3, t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна. Термодинамические и другие свойства серы резко меняются при 160 ° C, что связано с изменением молекулярного строения жидкой серы. Вязкость серы с повышением температуры сильно возрастает (от 0,0065 Пас при 155 ° C до 93,3 Пас при 187 ° C), а затем падает (до 0,083 Пас при 444,6 ° C).

Сера реагирует почти со всеми металлами.

Распространение в природе

Серы — достаточно распространенный элемент, на него приходится около 0,1% массы земной коры. Среднее содержание серы в земной коре 4,710 -2 мас.%, При этом основное количество природной серы сосредоточена в осадочных горных породах (0,3 мас.%). В других горных породах среднее содержание серы таков: дуниты, перидотиты, пироксениты — 0,01%; базальты, габронориты, диабаза — 0,03%; диориты, андезиты — 0,02%.

В природе сера встречается как в свободном состоянии — так называемая самородная сера, но значительно чаще она встречается в связанном виде, то есть в виде различных соединений. Важнейшие из них — железный колчедан, или пирит FeS 2, цинковая обманка ZnS, свинцовый блеск PbS, медный блеск Cu 2 S, гипс CaSO 4 · 2H 2 O, мирабилит Na 2 SO 4 · 10H 2 O и др.

Сера содержится в каменном угле и нефти, а также во всех растительных и животных организмах, поскольку она входит в состав белков.

Содержание серы в нефти и природном газе оценивается в 210 9 т, то есть больше, чем запасы природной серы. Сера в нефти присутствует в разной форме, от элементной серы и сероводорода в сернистой органики, который включает более 120 соединений. Основные серосодержащие вещества углеводородного сырья — сероводород, меркаптаны и другие сероорганические соединения. Сырьевой базой для получения серы является, как правило, газы с содержанием сероводорода не менее 0,1%.

Конечно самородная сера встречается сплошной массой, заполняя трещины и полости в горных породах, или в виде натечных, шаровидных и гниздоподибних агрегаты, сталактитов, сталагмитов, налетов, выцветов, землистых порошковатые скоплений. Нередко она образует кристаллы, которые часто группируются в сростки, друзы, щетки.

Физические свойства

Сера — кристаллическое вещество желтого цвета. Она очень хрупкая и легко растирается в мельчайших порошок. Плотность 2070 кг / м 3. t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна.

Встречается в трех аллотропных формах: две кристаллические (ромбическая и моноклинная, по способу соединения атомов в кристалле) и аморфная.

  • α-S (ромбическая) кристаллическая модификация, t плав = 112,8 ° C, устойчива к 95,6 ° C, лимонно-желтая;
  • β-S кристаллическая модификация, t плав = 119 ° C, устойчива при 95,6-119 ° C, медово-желтая. До 160 ° C молекулы 8-атомные, в парах — 2-атомные (парамагнитная сера), 4, 6, и 8-атомные.
  • Выше 160 ° C образуются спиральные цепи μ-S пластической серы.

Электрического тока и тепла сера почти не проводит. Пары серы при очень быстром охлаждении переходят в твердое состояние в виде очень тонкого порошка (серного цвета), минуя жидкое состояние. В воде сера нерастворим и не смачивается водой, но в бензоле C 6 H 6 и особенно в сероуглероде CS 2 растворяется хорошо.

Химические свойства

Имея во внешнем слое шесть электронов: (+ 16), 2,8,6 — атомы серы проявляют свойства окислителя и, присоединяя от атомов других элементов два электрона, которых им не хватает в полностью заполненной внешней оболочки, превращаются в отрицательно двухвалентные ионы: S 0 + 2е = S 2. Но Сера — менее активный окислитель, чем кислород, поскольку его валентные электроны отдаленные от ядра атома и слабее с ним связаны, чем валентные электроны атомов кислорода. В отличие от кислорода Сера может проявлять свойства и восстановителя: S 0 — 6e = S 6+ или S 0 — 4e = S 4+. Восстановительные свойства серы проявляются при взаимодействии с сильнее него окислителем, то есть с веществами, атомы которых имеют большее сродство к электрону.

Серы может непосредственно реагировать почти со всеми металлами (за исключением благородных), но преимущественно при нагревании. Так, если смесь порошков серы и железа нагреть хоть в одном месте, чтобы началась реакция, то дальше вся смесь сама собой раскалится (за счет теплоты реакции) и превратится в черную хрупкую вещество — моносульфид железа:

Fe + S = FeS

Смесь порошков серы и цинка при поджога реагирует очень бурно, со вспышкой. Вследствие реакции образуется сульфид цинка:

Zn + S = ZnS

С ртутью сера реагирует даже при обычной температуре. Так, при растирании ртути с порошком серы возникает черное вещество — сульфид ртути:

Hg + S = HgS

При высокой температуре сера реагирует также с водородом с образованием сероводорода:

H 2 + S = H 2 S.

При взаимодействии с металлами и водородом сера играет роль окислителя, а сама восстанавливается до ионов S 2- Поэтому во всех сульфидах сера негативно двухвалентное. Сера сравнительно легко реагирует и с кислородом. Так, подожжена сера горит на воздухе с образованием диоксида серы SO 2 (сульфитного ангидрида) и в очень незначительном количестве триоксида серы SO 3 (сульфатного ангидрида).

  • S + O 2 = SO 2
  • 2S + 3O 2 = 2SO 3

При этом окислителем является кислород, а серу — восстановителем. В первой реакции атом серы теряет четыре, а во второй — шесть валентных электронов, в результате чего Сера в составе SO 2 положительно четырёхвалентен, а в SO 3 — положительно шестивалентный.

Получение

Серу получают из самородных руд, а также в виде побочного продукта при переработке полиметаллических руд, из сульфатов при их комплексной переработке, из природных газов и горючих ископаемых при их очистке. Доля серы получена из сероводорода возрастает. Для отделения серы от посторонних примесей ее выплавляют в автоклавах. Автоклавы — это железные цилиндры, в которые загружают руду и нагревают перегретым водяным паром до 150 ° С под давлением 6 атм.. Расплавленное сера стекает вниз, а пустая порода остается. Выплавленная из руды сера еще содержит определенное количество примесей.

Вполне чистую серу получают перегонкой в ​​специальных печах, соединенных с большими камерами. Пары серы в холодной камере сразу переходят в твердое состояние и оседают на стенках в виде очень тонкого порошка светло-желтого цвета. Когда же камера нагревается до 120 ° С, то пары серы превращаются в жидкость. Расплавленную серу разливают в деревянные цилиндрические формы, где она и застывает. Такую серу называют Черенкова.

Применение

Сера широко применяется в различных отраслях народного хозяйства, в основном в химической промышленности для производства серной кислоты H 2 SO 4 (почти половина серы, добываемой в мире), сероуглерода CS 2, некоторых красителей, и других химических продуктов. Значительные количества серы потребляет резиновая промышленность для вулканизации каучука, то есть для преобразования каучука в резину.

Серу используют в химической промышленности при производстве фосфорной, соляной и других кислот, в резиновой промышленности, производстве красителей, дымного пороха и тому подобное. Самородную серу используют в сельском хозяйстве (инсектициды, микроудобрения, как дезинфицирующее средство в животноводстве).

Техническая сера, применяется для производства серной кислоты, должна содержать не менее 95% серы, мышьяка и Селена не должно быть совсем, а содержание органических веществ не должно превышать 1%. Производство искусственного волокна (вискозы) в химической промышленности является другим потребителем серы. В сельском хозяйстве серу применяют как средство борьбы с вредителями, частично в качестве удобрения, для дезинфекции при лечении животных. В бумажном производстве серу в виде SО2 используют при обработке древесной массы (бисульфатний метод). Сера используется при вулканизации резины, в стеклянной, кожевенной промышленности. Незначительные количества серы высокой чистоты используются в химико-фармацевтической промышленности. Серу используют также для производства ультрамарина. Текстильная, пищевая, крахмальная и паточная отрасли промышленности применяют серу или ее соединения для отбеливания и осветления, при консервировании фруктов, в холодильном деле.

Серу используют также в спичечном производстве, в пиротехнике, в производстве черного пороха и тому подобное. В медицине сера идет для изготовления серной мази при лечении кожных болезней. В сельском хозяйстве сернистый цвет применяют для борьбы с вредителями хлопчатника и виноградной лозы.

Воздействие на человека

Серный пыль раздражает органы дыхания, слизистые оболочки. ПДК — 2 мг / м. куб.

Раздел 1. Определение серы.

Раздел 2. Природные минералы серы .

Раздел 3. История открытия серы .

Раздел 4. Происхождение названия сера.

Раздел 5. Происхождение серы.

Раздел 6. Получение серы.

Раздел 7. Производители серы.

Раздел 8. Свойства серы.

- Подраздел 1. Физические свойства.

- Подраздел 2. Химические свойства.

Раздел 10. Пожароопасные свойства серы.

- Подраздел 1. Пожары на складах серы.

Раздел 11. Нахождение в природе.

Раздел 12. Биологическая роль серы.

Раздел 13. Применение серы.

Определение серы

сера — это элемент шестой группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. Sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

Сера - S, химический элемент с атомным номером 16, атомная масса 32,066. Химический символ серы S произносится «эс». Природная сера состоит из четырех стабильных нуклидов: 32S (содержание 95,084% по массе), 33S (0,74 %), 34S (4,16%) и 36S (0,016 %). Радиус атома серы 0,104 нм. Радиусы ионов: иона S2- 0,170 нм (координационное число 6), иона S4+ 0,051 нм (координационное число 6) и иона S6+ 0,026 нм (координационное число 4). Энергии последовательной ионизации нейтрального атома серы от S0 до S6+ равны, соответственно, 10,36, 23,35, 34,8, 47,3, 72,5 и 88,0 эВ. Сера расположена в VIA группе периодической системы Д. И. Менделеева, в 3-м периоде, и принадлежит к числу халькогенов. Конфигурация внешнего электронного слоя 3s23p4. Наиболее характерны степени окисления в соединениях -2, +4, +6 (валентности соответственно II, IV и VI). Значение электроотрицательности серы по Полингу 2,6. Сера относится к числу неметаллов.

В свободном виде сера представляет собой желтые хрупкие кристаллы или желтый порошок.

Сера (Sulfur) - это

Природные минералы серы

Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.

Важнейшие природные соединения серы: FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит. Кроме того, сера присутствует в черного золота, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

Сера (Sulfur) - это

История открытия серы

сера в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, ещё в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников. Около VIII в. китайцы стали использовать её в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла ), объясняют то, что её считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XII в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, ещё в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов , согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трёх принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения её из пиритов; последний был распространён в древней Руси. Впервые в литературе он описан у Агриколы. Таким образом, точно происхождение серы не установлено, но, как сказано выше, этот элемент использовался до Рождества Христова, а значит знаком людям с давних времён.

Сера встречается в природе в свободном (самородном) состоянии, поэтому она была известна человеку уже в глубокой древности. Сера привлекала внимание характерной окраской, голубым цветом пламени и специфическим запахом, возникающим при горении (запах сернистого газа). Считалось, что горящая сера отгоняет нечистую силу. В Библии говорится об использовании серы для очищения грешников. У человека средневековья запах «серы» ассоциировался с преисподней. Применение горящей серы для дезинфекции упоминается Гомером. В Древнем Риме с помощью сернистого газа отбеливали ткани.

Издавна использовалась сера в медицине — ее пламенем окуривали больных, ее включали в состав различных мазей для лечения кожных заболеваний. В 11 в. Авиценна (Ибн Сина), а затем и европейские алхимики полагали, что металлы, в том числе и серебро, состоят из находящихся в различных соотношениях серы и ртути. Поэтому сера играла важную роль в попытках алхимиков найти «философский камень» и превратить недрагоценные металлы в драгоценные. В 16 в. Парацельс считал серу наряду с ртутью и «солью» одним из основных «начал» природы, «душою» всех тел.

Практическое значение серы резко возросло после того, как изобрели черный порох (в состав которого обязательно входит сера). Византийцы в 673 г., защищая Константинополь, сожгли флот неприятеля с помощью так называемого греческого огня - смеси селитры, серы, смолы и других веществ — пламя которого не гасилось водой. В средние века в Европе применялся черный порох, по составу близкий к смеси греческого огня. С тех пор началось широкое использование серы для военных целей.


Издавна было известно и важнейшее соединение серы — серная кислота. Один из создателей ятрохимии, монах Василий Валентин, в 15 веке подробно описал получение серной кислоты путем прокаливания железного купороса (старинное название серной кислоты — купоросное масло).


Элементарную природу серы установил в 1789 А. Лавуазье. В названиях химических соединений, содержащих серу, часто содержится приставка «тио» (например, применяемый в фотографии реактив Na2S2O3 имеет название тиосульфат натрия). Происхождение этой приставки связано с греческим названием серы — theion.

Происхождение названия сера

Русское название серы восходит к праславянскому *sěra, которое связывают с лат. sērum «сыворотка».

Латинское sulphur (эллинизированное написание более старого sulpur) восходит к индоевропейскому корню *swelp- «гореть».

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.

Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (то есть одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворённые в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путём или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространённый из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями черного золота или Природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит всё новые подтверждения одна из разновидностей теории эпигенеза — теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-H2O и ангидрита CaSO4 в серу и кальцит СаСО3. Эта теория создана в 1935 году советскими учёными Л. М. Миропольским и Б. П. Кротовым. В её пользу говорит, в частности, такой факт.

В 1961 году в Ираке было открыто Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов — среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.


Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озёра (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.


Всё это означает, что разнообразие теорий и гипотез о происхождении самородной серы — результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах . Ещё из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот распространяется и на геохимию.

Получение серы

серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землёй. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности её самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

В 1890 г. Герман Фраш, предложил плавить серу под землёй и через скважины, подобные нефтяным, выкачивать её на поверхность. Сравнительно невысокая (113°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Также сера в больших количествах содержится в Природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.

Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 - 4227 тыс. тонн и категории C2 - 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.

Производители серы

Основными производителями серы в Российской Федерации являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие её как побочный при очистке газа.

Свойства серы

1) Физические

сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде, скипидаре. Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °С; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °С полимерные звенья начинают рушиться. Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона.

2) Химические

Горение серы

На воздухе сера горит, образуя сернистый ангидрид — бесцветный газ с резким запахом:

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO.


Помимо кислорода, сера реагирует со многими неметаллами, однако при комнатной температуре сера - только со фтором, проявляя восстановительные свойства:

Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов:

2S + Cl2 = S2Cl2

При нагревании сера также реагирует с фосфором, образуя, видимо, смесь сульфидов фосфора, среди которых — высший сульфид P2S5:

Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

S + H2 = H2S (сероводород)

C + 2S = CS2 (сероуглерод)

При нагревании сера взаимодействует со многими металлами, часто — весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

2Al + 3S = Al2S3

Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

Na2S + S = Na2S2

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

3S + 6KOH = K2SO3 + 2K2S + 3H2O

Полученный плав называется серной печенью.


С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:

S + 6HNO3(конц.) = H2SO4 + 6NO2 + 2H2O

S + 2H2SO4(конц.) = 3SO2 + 2H2O

Сера (Sulfur) - это

Сера (Sulfur) - это

Пожароопасные свойства серы

Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углём, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.

Средства тушения: распылённая вода, воздушно-механическая пена.

По данным В. Маршалла пыль серы относится к разряду взрывоопасных, но для взрыва необходима достаточно высокая концентрация пыли — порядка 20 г/м3 (20000мг/м3), такая концентрация во много раз превышает предельно допустимую концентрацию для человека в воздухе рабочей зоны — 6 мг/м3.

Пары образуют с воздухом взрывчатую смесь.

Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабосветящееся пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C.

Так как воздух по объёму состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объёма кислорода получается один объём SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха, и объёмное содержание SO2 в газовой смеси меньше теоретически возможного, составляя обычно 14…15 %.

Обнаружение горения серы пожарной автоматикой является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Горение происходит при низкой температуре. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространёнными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.

Для выполнения требований пожарной безопасности на складах серы необходимо:

Конструкции и технологическое оборудование должны регулярно очищаться от пыли;

Помещение склада должно постоянно проветриваться естественной вентиляцией при открытых дверях;

Дробление комков серы на решётке бункера должно производиться деревянными кувалдами или инструментом из неискрящего материала;

Конвейеры для подачи серы в производственные помещения должны быть снабжены металлоискателями;

В местах хранения и применения серы необходимо предусматривать устройства (бортики, пороги с пандусом и т. п.), обеспечивающие в аварийной ситуации предотвращение растекания расплава серы за пределы помещения или открытой площадки;

На складе серы запрещается:

Производство всех видов работ с применением открытого огня;

Складировать и хранить промасленную ветошь и тряпки;

При ремонте применять инструмент из искродающего материала.

Пожары на складах серы

В декабре 1995 года на открытом складе серы предприятия , расположенного в городе Сомерсет Вест Западной Капской провинции Южно-Африканской Республики произошёл крупный пожар, погибли два человека.

16 января 2006 г. около пяти вечера на череповецком предприятии «Аммофос» загорелся склад с серой. Общая площадь пожара — около 250-ти квадратных метров. Полностью ликвидировать его удалось лишь в начале второго ночи. Жертв и пострадавших нет.

15 марта 2007 рано утром на ООО «Балаковский завод волоконных материалов» произошёл пожар на закрытом складе серы. Площадь пожара составила 20 кв.м. На пожаре работало 4 пожарных расчёта с личным составом в 13 человек. Примерно через полчаса пожар был ликвидирован. Никто не пострадал.

4 и 9 марта 2008 года произошло возгорание серы в Атырауской области в хранилище серы ТШО на Тенгизском месторождении. В первом случае очаг возгорания удалось потушить быстро, во втором случае сера горела 4 часа. Объём горевших отходов нефтепереработки, к каковым по казахстанским законам отнесена сера, составил более 9 тысяч килограммов.

В апреле 2008 недалеко от посёлка Кряж Самарской области загорелся склад, на котором хранилось 70 тонн серы. Пожару была присвоена вторая категория сложности. К месту происшествия выехали 11 пожарных расчётов и спасатели. В тот момент, когда пожарные оказались около склада, горела ещё не вся сера, а только её небольшая часть — около 300 килограммов. Площадь возгорания вместе с участками сухой травы, прилегающими к складу, составила 80 квадратных метров. Пожарным удалось быстро сбить пламя и локализовать пожар: очаги возгорания были засыпаны землёй и залиты водой.

В июле 2009 в Днепродзержинске горела сера. Пожар произошёл на одном из коксохимических предприятий в Баглейском районе города. Огонь охватил более восьми тонн серы. Никто из сотрудников комбината не пострадал.

Нахождение в природе серы

С ера довольно широко распространена в природе. В земной коре ее содержание оценивается в 0,05% по массе. В природе часто встречаются значительные залежи самородной серы (обычно вблизи вулканов); в Европе они расположены на юге Италии, в Сицилии. Еще большие залежи самородной серы имеются в США (в штатах Луизиана и Техас), а также в Средней Азии, в Японии, в Мексике. В природе сера встречается как россыпями, так и в виде кристаллических пластов, иногда образуя изумительные по красоте группы полупрозрачных желтых кристаллов (так называемые друзы).

В вулканических местностях часто наблюдается выделение из-под земли газа сероводорода H2S; в этих же регионах сероводород встречается в растворенном виде в серных водах. Вулканические газы часто содержат также сернистый газ SO2.

На поверхности нашей планеты широко распространены месторождения различных сульфидных соединений. Наиболее часто среди них встречаются: железный колчедан (пирит) FeS2, медный колчедан (халькопирит) CuFeS2, свинцовый блеск PbS, киноварь HgS, сфалерит ZnS и его кристалическая модификация вюртцит, антимонит Sb2S3 и другие. Известны также многочисленные месторождения различных сульфатов, например, сульфата кальция (гипс CaSO4·2H2O и ангидрит CaSO4), сульфата магния MgSO4 (горькая соль), сульфата бария BaSO4 (барит), сульфата стронция SrSO4 (целестин), сульфата натрия Na2SO4·10H2O (мирабилит) и др.

Каменные угли содержат в среднем 1,0-1,5% серы. Сера может входить и в состав черного золота . Целый ряд месторождений природного горючего газа (например, Астраханское) содержат как примесь сероводород.


Сера относится к элементам, которые необходимы для живых организмов, так как она является существенной составной частью белков. Белки содержат 0,8-2,4% (по массе) химически связанной серы. Растения получают серу из сульфатов, содержащихся в почве. Неприятные запахи, возникающие при гниении трупов животных, объясняются главным образом выделением соединений серы (сероводорода: и меркаптанов), образующихся при разложении белков. В морской воде присутствует около 8,7·10-2 % серы.

Получение серы

С еру получают, в основном, выплавляя ее из горных пород, содержащих самородную (элементарную) серу. Так называемый геотехнологический способ позволяет получать серу без подъема руды на поверхность. Этот способ был предложен в конце 19 века американским химиком Г. Фрашем, перед которым встала задача извлечения на поверхность земли серы из месторождений юга США , где песчаный грунт резко усложнял ее добычу традиционным шахтным методом.

Фраш предложил использовать для подъема серы на поверхность перегретый водяной пар. Перегретый пар по трубе подают в подземный слой, содержащий серу. Сера плавится (ее температура плавления немного ниже 120°С) и по трубе, расположенной внутри той, по которой под землю закачивают водяной пар, поднимается наверх. Для того чтобы обеспечить подъем жидкой серы, через самую тонкую внутреннюю трубу нагнетают сжатый воздух.

По другому (термическому) методу, получившему особое распространение в начале 20 века на Сицилии, серу выплавляют, или возгоняют, из дробленной горной породы в специальных глиняных печах.

Существуют и другие методы выделения самородной серы из породы, например, экстракцией сероуглеродом или флотационными методами.

В связи с тем, что потребность промышленности в сере очень велика, разработаны методы ее получения из сероводорода H2S и сульфатов.

Метод окисления сероводорода до элементарной серы был впервые разработан в Великобритании, где значительные количества серы научились получать из остающегося после получении соды Na2CO3 по методу французского химика Н. Леблана сульфида кальция CaS. Метод Леблана основан на восстановлении сульфата натрия углем в присутствии известняка CaCO3.

Na2SO4 + 2C = Na2S + 2CO2;

Na2S + CaCO3 = Na2CO3 + CaS.

Соду затем выщелачивают водой, а водную суспензию плохо растворимого сульфида кальция обрабатывают диоксидом углерода:

CaS + CO2 + H2O = CaCO3 + H2S

Образующийся сероводород H2S в смеси с воздухом пропускают в печи над слоем катализатора. При этом за счет неполного окисления сероводорода образуется сера:

2H2S + O2 = 2H2O +2S

Аналогичный метод используют для получения элементарной серы и из сероводорода, сопутствующего природным газам.

Так как современная техника нуждается в сере высокой чистоты, разработаны эффективные методы рафинирования серы. При этом используют, в частности, различия в химическом поведении серы и примесей. Так, мышьяк и селен удаляют, обработав серу смесью азотной и серной кислот.

Использованием методов, основанных на дистилляции и ректификации, удается получить высокочистую серу с содержанием примесей 10-5 - 10-6 % по массе.

Применение серы

О коло половины производимой серы используется на производство серной кислоты, около 25% расходуется для получения сульфитов, 10-15% — для борьбы с вредителями сельскохозяйственных культур (главным образом винограда и хлопчатника) (наибольшее значение здесь имеет раствор медного купороса CuSO4·5H2O), около 10% используется резиновой промышленностью для вулканизации резины. Серу применяют при производстве красителей и пигментов, взрывчатых веществ (она до сих пор входит в состав пороха), искусственных волокон, люминофоров. Серу используют при производстве спичек, так как она входит в состав, из которого изготовляют головки спичек. Серу до сих пор содержат некоторые мази, которыми лечат заболевания кожи. Для придания сталям особых свойств в них вводят небольшие добавки серы (хотя, как правило, примесь серы в сталях нежелательна).

Биологическая роль серы

С ера постоянно присутствует во всех живых организмах, являясь важным биогенным элементом. Ее содержание в растениях составляет 0,3-1,2 %, в животных 0,5-2 % (морские организмы содержат больше серы, чем наземные). Биологическое значение серы определяется прежде всего тем, что она входит в состав аминокислот метионина и цистеина и, следовательно, в состав пептидов и белков. Дисульфидные связи -S-S- в полипетидных цепях участвуют в формировании пространственной структуры белков, а сульфгидрильные группы (-SH) играют важную роль в активных центрах ферментов. Кроме того, сера входит в молекулы гормонов, важных веществ. Много серы содержится в кератине волос, костях, нервной ткани. Неорганические соединения серы необходимы для минерального питания растений. Они служат субстратами окислительных реакций, осуществляемых распространенными в природе серобактериями.

В организме среднего человека (масса тела 70 кг) содержится около 1402 г серы. Суточная потребность взрослого человека в сере — около 4.

Однако по своему отрицательному воздействию на окружающую среду и человека сера (точнее, ее соединения) стоит на одном из первых мест. Основной источник загрязнения серой — сжигание каменного угля и других видов топлива, содержащих серу. При этом около 96% серы, содержащейся в топливе, попадает в атмосферу в виде сернистого газа SO2.

В атмосфере сернистый газ постепенно окисляется до оксида серы (VI). Оба оксида — и оксид серы (IV), и оксид серы (VI) — взаимодействуют с парами воды с образованием кислотного раствора. Затем эти растворы выпадают в виде кислотных дождей. Оказавшись в почве, кислотные воды угнетают развитие почвенной фауны и растений. В результате создаются неблагоприятные условия для развития растительности, особенно в северных регионах, где к суровому климату добавляется химическое загрязнение. В результате гибнут леса, нарушается травяной покров, ухудшается состояние водоемов. Кислотные дожди разрушают изготовленные из мрамора и других материалов памятники, более того, они вызывают разрушение даже каменных зданий и предметов торговли из металлов. Поэтому приходится принимать разнообразные меры по предотвращению попадания соединений серы из топлива в атмосферу. Для этого подвергают очистке от соединений серы и нефтепродукты, очищают образующиеся при сжигании топлива газы.


Сама по себе сера в виде пыли раздражает слизистые оболочки, органы дыхания и может вызывать серьезные заболевания. ПДК серы в воздухе 0,07 мг/м3.

Многие соединения серы токсичны. Особенно следует отметить сероводород, вдыхание которого быстро вызывает притупление реакции на его неприятный запах и может привести к тяжелым отравлениям даже с летальным исходом. ПДК сероводорода в воздухе рабочих помещений 10 мг/м3, в атмосферном воздухе 0,008 мг/м3.

Источники

Химическая энциклопедия: в 5 т. / Редкол.:Зефиров Н. С. (гл. ред.). — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 319. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8

Большая медицинская энциклопедия

СЕРА - хим. элемент, символ S (лат. Sulfur), ат. н. 16, ат. м. 32,06. Существует в виде нескольких аллотропных модификаций; среди них сера моноклинной модификации (плотность 1960 кг/м3, tпл = 119°С) и ромбическая сера (плотность 2070 кг/м3, ίπι = 112,8… … Большая политехническая энциклопедия

СЕРА - (обозначается S), химический элемент VI группы ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ, неметалл, известный с древности. Встречается в природе как в виде отдельного элемента, так и в виде сульфидных минералов, таких как ГАЛЕНИТ и ПИРИТ, и сульфатных минералов,… … Научно-технический энциклопедический словарь

сера - В мифологии ирландских кельтов Сера отец Парталона (см. глава 6). Согласно некоторым источникам, именно Сера, а не Парталон был мужем Дилгнейд. (

Какие области применения серы Вы узнаете из этой статьи.

Области применения серы

Сера в природе встречается в свободном состоянии и в разных соединениях. Ею получают из самородных руд. Также она является побочным продуктом переработки полиметаллических руд, комплексной переработки сульфатов, очистки горючих ископаемых.

Применение серы в промышленности

Главным потребителем серы считается химическая промышленность, которая поглощает примерно половину добываемой серной кислоты. Из нее производят черный порох, сероуглерод, различные красители, бенгальские огни и светящиеся составы. Немалую часть серы потребляет бумажная промышленность.

В резиновой промышленности серу применяют для того, чтобы превратить каучук в резину. Свойства каучука, такие как эластичность и упругость, материал приобретает только после смешивания с серой и нагревания. Данный процесс имеет название вулканизация. Бывает 2-ух видов: горячая и холодная. Во время горячей вулканизации каучук с серой нагревают до 130-160°С. Холодная вулканизация проходит без нагревания, каучук обрабатывается хлоридом серы (S 2 C 12).

Когда к каучуку добавляют 0,5-5% серы, то получается мягкая резина, из которой изготавливают автомобильные камеры, покрышки, трубки, мячи. Если к материалу добавить 30-50% серы, то получается жесткий, неэластичный материал – эбонит. Это твердое вещество и электрический изолятор.

Применение серы в сельском хозяйстве осуществляется в элементарном виде и в виде соединений. Растения нуждаются в сере, поэтому изготавливают серные удобрения, которые повышают качество и количество урожая. Серные удобрения способствуют повышению морозостойкости злаков и образованию органических веществ. Также с помощью серы борются с болезнями растений хлопчатника и винограда. Ею окуривают зараженные зернохранилища, плодоовощехранилища, чесоточных животных.

Применение серы в медицине

Сера является основой мазей, которые излечивают грибковые заболевания кожи – чесотки, псориаза, себореи. Из органических соединений серы изготавливают сульфамидные препараты — сульфазол, сульфидин, норсульфазол, стрептоцид и сульфодимезин. Также их применяют внутрь как слабительное и отхаркивающее средство.

Сера молотая кормовая — мелкий бледно-желтый порошок, нерастворимый в воде, растворим в некоторых маслах при нагревании на водяной бане. В сухом виде не влияет на организм. В присутствии влаги, щелочей или органических кислот образует сероводород, сернистый ангидрид, диоксид серы и др. Используется как один из основных компонентов кормовых и лечебных смесей. В организме животных сера находится в виде сложных органических соединений. Серосодержащие соединения играют важную роль в выработке энергии, свертывании крови, в синтезе коллагена, основного белка, который образует основу для костей, волокнистых тканей, кожи, волос и копыт, а также в образовании ферментов (веществ, ускоряющих химические реакции, которые постоянно происходят в организме). Способствует синтезу некоторых витаминов и серосодержащих аминокислот, благодаря чему способствует улучшению обмена веществ, повышению бактериальной ферментации в птиц, стимулирует рост шерсти, рогов и копыт у животных. Кроме того сера кормовая используется как слабительное, а также как противоядие при отравлении солями тяжелых металлов.

Применение серы молотой, гранулированной, технической и кормовой в различных отраслях промышленности

Техническая сера используется для промышленного производства серной кислоты, сероуглерода, красителей, текстильной продукции и тому подобное.

По разным данным, примерно половина полученной серы комовой используется на производство серной кислоты и минеральных удобрений. В технологии производства серной кислоты сера — основной промышленный химический реактив. Применение этого реактива в производстве удобрений имеет важное значение для получения полноценного минерального удобрения. Также используется для переработки, очистки сточных вод, добычи полезных ископаемых, для производства спичек, в целлюлозно-бумажной промышленности и для производства красок, светящихся в темноте (люминесцентных и флуоресцентных). Сера комовая применяется в производстве серной пенопласта, новых асфальтовых покрытий, сиркобетону — особо прочных строительных блоков.

Диоксид серы SO2 используется как пищевой консервант для защиты кормов для животных от окисления и от бактерий, для производства пищевых красителей и добавок — усилителей вкуса.

Сульфиды применяются в производстве красок для полиграфии, в качестве флотационных реагентов в цветной металлургии, в целлюлозной промышленности для отбеливания бумаги.

Использование серы гранулированной как удобрения обеспечивает пополнение запасов серы в почве, и реализуется путем внесения на поверхность почвы гранулированной серы в дозе 140-210 кг / га и сопровождается необходимым количеством поливов за сезон в зависимости от потребности выращиваемой культуры.

Такой процесс является отличной существенным признаком пополнения запасов серы в почве и в конечном итоге обеспечивает реализацию поставленной цели — получить повышение урожая сельскохозяйственных культур за счет внесения гранул серы.

Применение серы молотой кормовой

Сера необходима организму животного. Она входит в состав глутатиона, который играет важную роль в окислительных процессах организма, инсулина — гормона поджелудочной железы и др.

Добавление серы молотой кормовой в рацион животных способствует:

При употреблении в пищу сера образует сероводород и сульфит натрия, раздражающие рецепторы кишечника и вызывают слабительный эффект. В кишечнике сероводород частично всасывается и, выделяясь через легкие, действует как отхаркивающее ветзасиб.

Способы применения серы молотой кормовой:

При выпадении перьев у кур сера применяется в суточных дозах: взрослым курам 50-100 мг цыплятам 1-2-месячным 12-25 мг 15-30-дневным 8-12 мг 7-15-дневным 3-5 мг.

Для улучшения обмена веществ суточные дозы с кормом: лошадям и крупному рогатому скоту 2-5 г мелкой рогатому скоту и свиньям 0,5-1 г собакам 0,1-0,2 г кошкам и курам 0,05-0,1 г.

Как слабительное и антидот: лошадям 100-250 г крупному рогатому скоту 100-300 г мелкой рогатому скоту 50-100 г свиньям 15-25 г собакам 10-15 г.

Сера молотая кормовая не обладает сенсибилизуючою, эмбриотоксическим, тератогенным и мутагенным действием. Это безопасное, малотоксического соединения для теплокровных животных, входит в состав некоторых витаминов (боитин, тиамин). Еще одна особенность молотой серы — нейтрализует токсическое действие тяжелых металлов в печени и почках животных.

Для лучшего фугинцидного и актарацидного эффекта следует применять серу при температуре 20-22˚С. Если температура ниже, данные свойства не проявляются и не действует на возбудителей ложной мучной росы.

Молотый серу применяют в промышленности для получения синтетических волокон, красителей, люминофоров.

Сера как минеральное удобрение

Всем хорошо известно, что многие растения, технические и кормовые культуры нуждаются в уходе, подкормка на различных стадиях процесса выращивания. Перед посадкой, в процессе посадки и роста, даже задолго до начала каких-либо действий (для подготовки почвы) необходимо выполнять ряд действий, которые помогут в будущем собрать хороший урожай. И частные фермеры, и крупные аграрные предприятия об этом знают, и каждый по-своему подходит к процессу, используя самые разнообразные средства и схемы их применения. Одним из самых популярных минеральных удобрений является сера. Давайте сейчас попробуем разобраться в выгодах ее применения.

Что такое сера?

Сера (серы) — элемент VI группы периодической системы химических элементов с атомным номером 16 и атомным весом 32,065. Сказывается общепринятым символом S. Это желтая кристаллическое вещество, неметалл, что встречается в природе в большом количестве в самородном виде, реже — в виде сульфидов тяжелых металлов. Сульфаты (часть из них) хорошо растворяются и активно участвуют в различных грунтовых процессах.

В наше время серу получают в различных товарных формах (определяются заказчиком): комовая, жидкая, формируемая, гранулированный, молотый, коллоидная, чистые.

Применение серы в сельском хозяйстве

Уже более 180 лет сера активно применяется в сельском хозяйстве. Она признана необходимым компонентом для питания растений (одним из главных, наряду с фосфором, магнием, кальцием …), поэтому в разном количестве входит в состав многих удобрений.

Сера как важнейший макроэлемент является составной белка, при ее достаточном содержании на растение в полной мере работает азот. Из атмосферы сера поступает в организм растения через листья. Но этого достаточно лишь для обеспечения минимальной потребности культуры в питании. Чтобы это вещество поступало в достаточном количестве, необходимо использовать серосодержащие химические удобрения.

Что дает сера растениям?

Во-первых, она является важным участником энергетических, восстановительных процессов. Также они регулируют наличие в письме хлорофилла, активизируют формирование лигнина, укрепляет механические ткани растений.

Во-вторых, благодаря сере, ее фунгицидного действия, зерновые культуры становятся устойчивыми к болезням, вредителям. Увеличивается качество и количество белка и клейковины в зерне. Как результат — предотвращается полеганию зерновых, увеличивается урожай и улучшаются хлебопекарные качества сырья.

В-третьих, сера увеличивает содержание сахара в корнеплодах сахарной свеклы, крахмала в клубнях картофеля, а в овощах уменьшает количество опасных нитратов.

В-четвертых, сера помогает регулировать наличие и формы других веществ в растении, таких как: фосфор, калий, кальций, магний и железо. Например, под ее влиянием фосфор превращается из труднодоступных в легкодоступные соединения, таким образом, улучшается его усвояемость.

Купить серу молотую оптом можно на сайте ЧП Система Оптимум. Компания поставляет на рынок Украины разные типы этого вещества не только для сельского хозяйства, но и для других отраслей промышленности. Комова, техническая, гранулированная сера в наличии в больших объемах, чтобы каждый клиент смог получить необходимое количество удобрений.

Основной тип упаковки — мешки по 30 кг. Доставку осуществляем собственным транспортом или перевозчиками. Также возможен самовывоз. Заказывайте любое количество серы высокого качества, цена вас приятно удивит.

Сера в медицине, химической, резиновой и других отраслях промышленности

Сера (серы) — химический элемент VI группы периодической системы Менделеева, сказывается общепринятым знаком S. Атомный номер — 16 атомный вес — 32,065. Желтый (иногда с серым или зеленым оттенком) кристаллический типичный неметалл, что существует в природе как в чистом виде, так и в различных соединениях.

Сера является побочным продуктом газодобывающей отрасли (при переработке она превращается в комки). Чтобы получить молотый серу, необходимо размолоть эти комки в микронизатора.

Где применяется сера?

Активная помощь организму в борьбе с опасными бактериями, поддержание необходимого уровня свертываемости крови, содействие усвоению полезных веществ, создание барьера для токсинов, радиации и других опасных воздействий. Благодаря этим и многим другим примечательным свойствами, сера и ее соединения получили очень широкое применение.

Сера в химической промышленности

Химическая промышленность — одна из основных сфер использования серы. Главное направление — производство серной кислоты, а также других кислот: фосфорной, соляной, плавиковой, борноитощо. Также из нее для различных целей изготавливаются синтетические волокна, красители, порох, сероуглерод и другие продукты.

Серная кислота необходима для функционирования свинцовых аккумуляторов, где она выступает электролитом. В концентрированном виде ней от ненужных органических соединений очищают нефтепродукты. В разбавленном — проволока и письма от окалины перед лужением и оцинковкой. Используется серная кислота и для травления металлических изделий, если предполагается покрытие последних медью, хромом, никелем и др.

На производство серной кислоты идет примерно половина всей серы, добываемой в мире.

Сера в медицине и фармацевтике

Важные серосодержащие вещества и в плане воздействия на человека. При лечении многих болезней используют препараты, содержащие серу. Они повышают жизненный тонус, иммунитет, убирают даже хроническую усталость, очищают организм от шлаков и токсинов, создают препятствие для инфекций и простуд. Мелкодисперсная сера входит в состав мазей, которые лечат кожные грибковые заболевания (чесотка, себорея, псориаз …). При недостатке серы плохо сворачивается кровь, возникают запоры, проблемы с сердечно-сосудистой системой и суставами. Если необходимо лечить ангину, стоматит, уретрит, энтеробиоз, заживлять гнойные раны, ожоги, экземы, без серы не обойтись!

Сера в резиновой отрасли

В резиновой промышленности с помощью серы каучук превращают в резину при смешивании и нагревании ее до определенной температуры. Только сера позволяет приобрести таких ценных свойств, как гибкость и эластичность.

Этот процесс производства резины называется вулканизацией, которая может быть холодной и горячей. От количества применяемой серы зависят свойства вулканизованных материалов. К примеру:

— Каучук + 0,5-5% серы = мягкая резина для автопокрышек, камер, мячиков, трубок и тому подобное;

— Каучук + 30-50% серы = жесткий неэластичен эбонит.

Сера в пищевой промышленности

Сера входит в состав продуктов как растительного, так и животного происхождения. Ее недостаток можно восполнить, употребляя овощи и соки, фреши.

Также в пищевой отрасли широко используется диоксид серы — всем известный консервант, количество которого должно соответствовать стандартам. Диоксид серы применяют:

— В мясоперерабатывающей отрасли для создания препятствия бактериям;

— При заготовке фруктов и овощей в качестве промежуточного консерванта;

— При изготовлении сухофруктов для увеличения срока хранения и улучшения товарного вида;

— В изготовлении пива, слабоалкогольных напитков, соков, чтобы продлить срок годности;

— В производстве вин, чтобы избежать окисления и выполнить стабилизацию микрофлоры.

Хотите купить серу для использования на вашем предприятии? Интересуют большие объемы поставок?

Тогда у нас есть что вам предложить!

Сера как кормовая добавка: применение серы в животноводстве

Сера молотая кормовая (в порошковом виде) — неотъемлемая часть полноценного рациона в животноводстве, особая незаменимая лечебная субстанция.

Правильное питание обеспечивает правильное, влияет на общее состояние организма, становится на пути болезней, среди которых и такие, которые приводят к летальному исходу.

Обязательной составляющей понятия «правильное питание» является кормовые добавки, в том числе и сера.

Сера, которая используется в животноводстве, входит в состав органических соединений, активизируют выработку энергии, синтез коллагена, свертывания крови. Она незаменима в процессе производства основного белка, который, в свою очередь, необходим для развития костной ткани. Благодаря ей, организм производит ферменты, ускоряющие разнообразные химические реакции, очень важны для своего функционирования.

В теле животного этот элемент находится в связанной форме, в большинстве случаев в аминокислотах (цистин, цистеин, таурин), входящих в белки тканей и шерсти. Достаточное количество серы, например, в шерсти составляет 4%. О таком покров можно сказать, что он действительно богат цистином.

Сера входит в состав инсулина (гормон поджелудочной железы), метеонину, витамина В1, антиневралгийного В-тиамина. Так, обогащенные ими корма невероятно влияют на кожные и волосяные (шерстяные) покровы. Улучшается оперение, активизируется формирование рогов и копыт, повышаются объемы надоев (до 10-15%), жирность молока и качественные характеристики яиц.

Сера выступает зв`язувальним элементом для тяжелых металлов. Она нейтрализует вредные токсины, которые негативно влияют на печень и почки.

Диоксид серы SO2 применяется в качестве пищевого консерванта, призванного защитить корма для животных от бактерий, предупредить окисления. Также его используют при производстве пищевых красителей / усилителей вкуса.

Если сера молотая поступает в организм животного в достаточном количестве, многие системы работают, как положено. Если же наблюдается ее нехватка, необходимо пересмотреть рацион питания, добавить немного сульфатов натрия / аммония или элементарную cиpку.

Примечательно: кормовая сера молотая — малотоксична для теплокровных животных соединение. Тератогенным и мутагенным, сенсибилизирующее и эмбриотоксическое действия не наблюдаются.

Купить серу молотую можно на сайте компании. Осуществляем продажу серы оптом, возможен заказ любых крупных партий с доставкой по всей Украине.

Сера молотая, гранулированная, комовая — все товарные типы серы реализуются по доступным ценам и поставляются заказчикам в оговоренные сроки. Заказывайте кормовую добавку по контактному телефону.