Бизнес

Группа пород химического и органического происхождения. Класс карбонатных пород

Главнейшие осадочные породы органического и химического происхождения

Классификация осадочных обломочных (терригенных) пород

Тема лекции: Cтроение и состав Земли. Земля в космическом пространстве. Форма и размеры Земли. Внутреннее строение Земли. Химический и минœеральный состав недр Земли. Физические поля Земли. Строение и состав земной коры. Вещественный состав земной коры. Минœералы. Горные породы.

Земля является одним из бесчисленных небесных тел, рассеянных в безграничном пространстве Вселœенной. Общее представление о положении Земли в мировом пространстве и отношении ее с другими космическими телами необходимы и для курса геологии, так как многие процессы, совершающиеся на поверхности и в глубоких недрах земного шара, тесным образом связаны с влиянием внешней среды, окружающей нашу планету. Познание Вселœенной, изучение состояния различных тел и протекающих на них процессов проливает свет на проблемы происхождения Земли и ранние стадии ее развития. Вселœенная - ϶ᴛᴏ весь мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в своем развитии. Вселœенная состоит из бесчисленного множества тел, весьма различных по своему строению и размеру. Различают следующие основные формы космических тел: звезды, планеты, межзвездная материя. Звезды представляет собой крупные активны.е космические тела. Радиус крупных звезд может достигать миллиарда километров, а температура даже на поверхности – многих десятков тысяч градусов. Планеты – сравнительно небольшие по размеру космические тела, как правило, холодные и обычно являющийся спутниками звезд. Пространство между космическими телами заполнены межзвездной материей (газы, пыль). Космические тела группируется в системы, в пределах которых они связаны между собой силами тяготения. Простейшая система – Земля со своим спутником Луной, образует систему более высокого порядка – Солнечную систему. Еще более сложным строением характеризуется скопления космических тел высшего порядка – галактики. Примером такой системы может служить галактика Млечный путь, в состав который входит Солнечная система. По форме наша галактика напоминает двояковыпуклую линзу, а в плане представляет собой яркое сгущение звезд в ядре со спиралевидными звездными потоками.

Строение Солнечной системы. Наша Солнечная система включает, кроме центрального светила – Солнца, девять планет, их спутники, астероиды и кометы. Солнце – звезда, раскаленный плазменный шар, типичный ʼʼжелтый карликʼʼ, находящийся на средней стадии звездной эволюции. Расположено Солнце в пределах одной из спиральных ветвей нашей Галактики и обращается вокруг центра Галактик с периодом около 200 миллион лет. Температура внутри Солнца достигает нескольких миллионов лет. Источником энергии Солнца является термоядерные превращения водорода в гелий. Спектральное изучение Солнца позволило выделить в его составе 70 элементов, известных на Земле. Солнце состоит на 70 % из водорода, 27% из гелия, на долю остальных элементов остается около 3 %. В Солнце сосредоточено 99,886 % всœей массы Солнечней системы. Солнце оказывает огромное влияние на Землю, на земную жизнь, ее геологическое развитие. Наша планета – Земля отстоит от Солнца на 149600000 км. Планеты вокруг Солнца располагаются в следующем порядке: четыре внутренних - Меркурий, Венера, Земля и Марс (планеты земной группы) и пять внешних – Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером находится пояс астероидов – несколько тысяч мелких твердых тел. Для геологов представляют интерес четыре внутренние планеты, которые характеризуются небольшими размерами, высокой плотностью, небольшой массой. Эти планеты по размерам, составу и внутреннему строению наиболее близки нашей Земле. По современным представлениям тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца из центральной части. Из частиц окружающей газово-пылевой материи в результате аккреции сформировались планеты обращающиеся по орбитам вокруг Солнца.

Общая характеристика Земли. Форма и размеры Земли. Под фигурой, или формой Земли, понимают форму ее твердого тела, образованную поверхностью материков и дном морей и океанов Геодезические измерения показали, что упрощенная форма Земли приближается к эллипсоиду вращения (сфероиду). Действительное форма Земли является более сложной, так как на ее поверхности имеется много неровностей. Наиболее близкой к современной фигуре Земли является фигура, по отношению к поверхности которой сила тяжести повсœеместно направлено перпендикулярно. Она названа геоидом, что дословно означает ʼʼземлеподобныйʼʼ. Поверхность геоида в морях и океанах соответствует поверхности воды, а на континœентах – уровню воды в воображаемых каналах, пересекающих всœе материки и сообщающихся с Мировым океаном. Поверхность геоида приближается к поверхности сфероида, отклонясь от него примерно на 100м, на материках она немного повышается по отношению к поверхности сфероида, а в океанах - понижается. Измерения размеров Земли показали следующее: экваториальный радиус-6378,2км; полярный радиус-6356,8км; средний радиус Земли-6371км; полярное сжатие- 1/298; площадь поверхности- 510 млн. км кв; объём Земли-1, 083млрд. км куб; масса Земли-6*10 21 т; средняя плотность-5, 52 г/см 3

Физические свойства Земли. Земля обладает определœенными физическими свойствами. В результате их изучения выявлены общие особенности строения Земли и можно установить в ее недрах наличие полезных ископаемых. К физическим свойствам Земли относятся сила тяжести, плотность, давление, магнитные, тепловые, упругие, электрические и другие свойства. Сила тяжести, плотность, давление. На Земле постоянно действуют сила притяжения и центробежная сила. Равнодействующая этих сил определяет силу тяжести. Сила тяжести меняется как по горизонтали, увеличиваясь от экватора к полюсам, так и по вертикали, уменьшаясь с высотой. В связи с неравномерным распределœением вещества земной коре действительное значение силы тяжести отклоняются от нормальной. Эти отклонения получали название аномалий силы тяжести. Οʜᴎ бывают положительными (при наличии более плотных горных пород) или отрицательными (при распространении менее плотных пород). Изучение аномалий сил тяжести ведется с помощью гравиметров. Отрасль прикладной геофизики, которая изучает аномалии силы тяжести с целью выявления в недрах полезных ископаемых или благоприятных геологических структур принято называть гравиразведкой. По гравиметрическим данным, средняя плотность Земли составляет 5,52 г/см 3 .Плотность пород, слагающих земную кору, от 2,0 до 3,0 г/см 3 .Средняя плотность земной коры 2,8 г/см 3 . Различие между средней плотностью Земли и земной коры указывает на более плотное состояние вещества во внутренних частях Земли, достигая в ядре порядка 12,0 г/см 3 . Одновременно с увеличением плотности в направлении к центру Земли возрастает и давление. В центре Земли давление достигает 3,5 млн.атм. Магнетизм Земли. Земля представляет собой гигантский магнит с силовым полем вокруᴦ. Магнитные полюса Земли в настоящее время расположены вблизи географических полюсов, но не совпадает с ними. Различают магнитное склонение и магнитное наклонение. Магнитным склонением принято называть угол отклонения магнитной стрелки компаса от географического меридиана. Склонение должна быть западным и восточным. Магнитное наклонение определяется углом наклона магнитной стрелки к горизонту. Наибольшее наклонение наблюдается в районе магнитных полюсов. На общий фон магнитного поля накладывается влияние горных пород, содержащих ферромагнитные минœералы (магнетит и некоторые другие), благодаря чему на поверхности Земли возникают магнитные аномалии. Выявлением таких аномалий с целью поисков желœезных руд занимается магниторазведка. Исследования показали, что горные породы содержащие ферромагнитные минœералы, обладают остаточный намагниченностью сохраняющей направление магнитного поля времени и места их образования. Палеомагнитные данные используются для восстановления особенностей магнитного поля древних эпох, а также для решения задач геохронологии, стратиграфии, палеогеографии. Οʜᴎ оказали большое влияние на разработку теории тектоники литосферных плит.

Тепло Земли. Тепловой режим Земли обусловлены двумя источниками: тепло, полученное от Солнца; тепло, выделяемое из недр Земли. На поверхности Земли основным источником тепла является Солнце. Прогревание Солнцем распространяется на незначительную глубину не превышающую 30 м. На некоторой глубинœе от поверхности располагается пояс постоянной температуры, равный среднегодовой температуре данной местности. В окрестностях Москвы на глубинœе 20 м от поверхности наблюдается постоянная температура, равная +4,2 0 . Ниже пояса постоянной температуры установлено увеличение температуры с глубиной, связанное с тепловым потоком, поступающим из внутренних частей Земли. Нарастание температуры в градусах Цельсия на единицу глубины принято называть геотермическим градиентом, а интервал глубины в метрах, на котором температура повышается на 1 0 , принято называть геотермической ступенью. Величина геотермической ступени меняется в широких пределах: на Кавказе 12 м, в Эмбенском районе 33м, Карагандинском бассейне 62 м, на Камчатке 2-3 м. В среднем геотермический градиент принимается около 30 0 С на 1км и соответствующее ему геотермическая ступень около 33м. Считают, что геотермическая ступень сохраняется до глубины 20км. Ниже рост температуры замедляется. По расчетом ученых на глубинœе 100 км температура, видимо достигает 1300 0 С. На глубинœе 400км – 1700 0 С, 2900км – 3500 0 С. Источниками внутреннего тепла Земли считают радиоактивный распад элементов, в процессе которого выделяется огромное количество тепла, энергию гравитационной дифференциации вещества, а также остаточное тепло, сохранившееся со времен формирования планеты.

Строение Земли. Земля характеризуется оболочным строением. Оболочки Земли, или геосферы, различаются составом, физическими свойствами, состоянием вещества и подразделяются на внешние, доступные для непосредственного изучения, и внутренние, исследуемые главным образом косвенными методами (геологическими, геофизическими, геохимическими). Внешние сферы Земли – атмосфера, гидросфера и биосфера составляют характерную особенность строения нашей планеты и играют важную роль в формировании и развитии земной коры.Атмосфера – газовая оболочка Земли, играет одну из главных ролей в развитии жизни на Земле и определяет интенсивность геологических процессов на поверхности планеты. Воздушная оболочка нашей планеты, общая масса которой оценивается в 5,3*10 15 m представляет смесь различных газов: азота (78,09%) , кислорода (20,95%), аргона (0,93%) . Вместе с тем, присутствует углекислый газ (0,03%) , водород, гелий, неон и другие газы, а также водяной пар (до 4%) , частицы вулканической, эоловой и космической пыли. Кислород воздуха обеспечивает процессы окисления различных веществ, а также дыхание организмов. В атмосфере имеется озон на высоте 20-30 км. Наличие озона обеспечивает защиту Земли от губительного для жизни воздействия ультрафиолетовых и других излучении Солнце. Углекислый газ и водяные пары служат регулятором температуры, так как конденсирует получаемое Землей тепло. Углекислый газ поступает в воздух в результате разложения организмов и их дыхания, а также при вулканических процессах, расходуется же для питания растений. Воздушные массы атмосферы находятся в постоянном движении под воздействием неравномерного нагревания поверхности Земли в различных широтах, неравномерного нагревания материков и океанов. Воздушные потоки переносят влагу, твердые частицы - пыль, существенно влияют на температуру различных областей Земли. Атмосферу подразделяют на пять базовых слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Для геологии наибольшей интерес представляет тропосфера, непосредственно соприкасающаяся с земной поверхностью и оказывающая на нее существенное влияние. Тропосфера характеризуется большой плотностью, постоянным присутствием водяного пара, углекислоты и пыли, постепенным понижением температуры с высотой и существованием вертикальной и горизонтальной циркуляции воздуха.

Гидросфера - прерывистая оболочка Земли, включающая воды океанов, морей, озер и рек, подземные воды и воды, собранные в виде вечных снегов и льда. Основная часть гидросферы-Мировой океан, объединяющий всœе океаны, окраинные и связанные с ними внутриконтинœентальные моря. Количество океанических вод суши 4млн.км 3 , материковых льдов около 22 млн.км 3 , подземных вод 196 млн. км 3 . Гидросфера занимает 70,8% земной поверхности (361 млн.км 2).средняя глубина составляет 3750 м, максимальная глубина приурочена к Марианскому желобу(11022м). Океанические и морские воды характеризуются определœенным химическим составом и соленостью. Нормальная соленость вод Мирового океана составляет 3,5% (35 г солей на 1 л воды). Воды океана содержат почти всœе известные химические элементы. Подсчитано, что общее количество солей растворенных в воде Мирового океана, составляет 5*10 16 m. Карбонаты, кремнезем широко извлекаются из воды морскими организмами на построение скелœетных частей. По этой причине солевой состав океанических вод резко отличается от состава речных вод. В океанических водах преобладают хлориды (88,7%) - NaCl, MgCl 2 и сульфаты (10,8%) , а в речных водах карбонаты (60,1%) - CaCO 3 и сульфаты(9,9%). Кроме солей в воде растворены и некоторые газы –главным образом азот, кислород, углекислый газ. Воды гидросферы совместно с растворенными в ней веществами активно участвует в химических реакциях, протекающих в гидросфере, а также при взаимодействии с атмосферой, земной корой и биосферой. Гидросфера, как и атмосфера, является действующей силой и средой экзогенных геологических процессов. Мировой океан играет огромную роль в жизни, как всœей планеты, так и человечества. В океане и в его недрах находятся огромные запасы минœеральных ресурсов, которые во всœе большем объёме привлекаются для нужд человечества (нефть, химическое сырье и др). Воды океанов подвергаются загрязнению нефтью и нефтепродуктами, радиоактивными и бытовыми отходами. Это обстоятельство приобретает угрожающие размеры и требует безотлагательного решения.

Биосфера. Биосферой называют область распространения жизни на Земле. Современная биосфера включает в себе всю гидросферу, верхнюю часть атмосферы (тропосферу). Ниже почвенного слоя живые организмы встречаются в глубоких трещинах, подземных водах, иногда в нефтеносных слоях на глубинœе в тысячи метров. В состав живых организмов входят не менее 60 элементов и главными из них являются C, O, H, S, P, K, Fe и некоторые другие. Живая масса биосферы в пересчете на сухое вещество составляет около 10 15 т. Основная масса живого вещества сосредоточена в зелœеных растениях, способных аккумулировать солнечную энергию благодаря фотосинтезу. С химической точки зрения фотосинтез – окислительно- восстановительная реакция CO 2 + H 2 O->CH 2 O + O 2 , в результате который за счёт поглощения углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Биосфере принадлежит большая роль в энергетике Земли. За миллионы лет биосфера накопила в недрах колоссальные запасы энергии – в толщах углей, нефть, скопления горючего газа. Организмы являются важными породообразовательными земной коры.

Внутренние строение Земли. Изучение глубинного строения Земли - одно из главных задач современной геологии. Непосредственному наблюдению доступны лишь самые верхние (до глубин 12 – 15км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками шахтами и буровыми скважинами.

Представления о строении более глубоких зон Земли, основывается главным образом на данных комплексах геофизических методов. Из них особое значение имеет сейсмический (греч. ʼʼсейсмаʼʼ - сотрясения) метод, основанный на регистрации скорости распространения в телœе Земли волн, вызываемых землетрясениями или искусственным взрывами. В очагах землетрясений возникают продольные сейсмические волны, которые рассматриваются как реакция среды на изменения объёма, и поперечные волны, представляющие собой реакцию среды на изменения формы и в связи с этим распространяющиеся только в твердых телах. Сегодня имеющиеся данные подтверждают сферически – симметричное строение недр Земли. Еще в 1897 ᴦ. профессор Геттингенского университета Э. Вихерт высказал мысль об оболочечном строением Земли, которая состоит из желœезного ядра, каменной мантии и земной коры. В 1910 ᴦ. югославский геофизик А. Мохоровичич, изучая особенности распространения сейсмических волн при землетрясении в районе города Загреб, установил на глубинœе 50 км поверхность раздела между корой и мантией. В дальнейшем эта поверхность была выявлена на различных глубинах, но всœегда прослеживались четко. Ей дали название ʼʼповерхность Мохоровичичаʼʼ, или Мохо (М). 1914 г немецкий геофизик Б. Гуттенберг установил границу раздела ядра и мантии на глубинœе 2900км. Она получила название поверхности Вихерта – Гуттенберга. Датский ученный И. Леман в 1936ᴦ. обосновала существование внутреннего ядра Земли радиусом 1250км. Весь комплекс современных геолого-геофизических данных подтверждает идею об оболочечном строением Земли. Чтобы правильно понять главнейшие особенности этого строения, геофизики строят специальные модели. Известный геофизик В.Н. Жарков характеризует модель Земли: это ʼʼкак бы разрез нашей планеты, на котором показано, как меняется с глубиной такие важнейшие ее параметры, как плотность, давление, ускорение силы тяжести, скорости сейсмических волн, температура, электропроводность и другиеʼʼ (Жарков, 1983, с. 153). Наиболее распространена модель Буллена – Гуттенберга.

Земная кора – твердая верхняя оболочка Земли. Ее толщина изменяется от 5-12 км под водами океанов, до 30-40 км в равнинных областях и до 50-750км в горных районах. Мантия Земли распространяется до глубины 2900 км. Она подразделяется на две части: верхнюю до глубины 670 км и нижнюю до 2900 км. Сейсмическим методом в верхней мантии установлен слой в катором наблюдается понижение скорости сейсмических волн, особенно поперечных, и повышение электропроводности, что свидетельствует о состоянии вещества, отличающегося от выше- и нижелœежащих слоев. Особенности этого слоя, получившего название астеносфера (греч.астянос-слабый) объясняется его плавлением в пределах 1-2 до 10%, происходящим в результате более быстрого повышения температуры с глубиной, чем повышения давления. Астеносферный слой расположен блихе всœего к поверхности под океанами, от 10-20 км до 80-200км, от 80 до 400 км под континœентами. Земная кора и часть верхней мантии над астеносферой носит название литосфера. Литосфера холодная, в связи с этим она жесткая и может выдержать большие нагрузки. Нижняя мантия характеризуется дальнейшим увеличением плотности вещества и плавным нарастанием скорости сейсмических волн. Ядро занимает центральную часть Земли. В его составе выделяют внешнее ядро, переходную оболочку и внутреннее ядро. Внешнее ядро состоит из вещества нахлдящегося в расплавлено-жидком состоянии. Внутреннее ядро занимает сердцевину нашей планеты. В пределах внутреннего ядра скорости продольных и поперечных волн возрастает, что свидетельствует о твердом состоянии вещества. Внутреннее ядро состоит из сплава желœеза с никелœем.

Состав и строение земной коры. Наиболее достоверные сведения имеются о химическом составе самой верхней части земной коры, доступной для непосредственного анализа(до глубины 16-20 км). Первые цифры о химическом составе земной коры были опубликованы в 1889 ᴦ. американским ученым Ф.Кларком. Впоследствии А.Е.Ферсман предложил называть процентное содержание элемента в земной коре кларком этого элемента. По данным А.Б.Ронова и А.А.Ярошевского (1976 ᴦ.), в составе земной коры наиболее распространены восœемь элементов (в весовых %), составляющих в сумме свыше 98 %: кислород-46,50; кремний-25,70; алюминий-7,65; желœезо-6,24; кальций-5,79; магний-3,23; натрий-1,81; калий-1,34. По особеннстям геологического строения, геофизической характеристике и составу земная кора делится на три базовых типа: континœентальную, океанскую и промежуточную. Континœентальная состоит из осадочного слоя толщиной 20-25 км, гранитного (гранитно-метаморфического) толщиной до 30 км и базальтового толщиной до 40 км. Океанская кора состоит из первого осадочного слоя толщиной до 1 км, второй-базальтовый толщиной 1,5-2,0 км и третий-габбро-серпентинитовый толщиной 5-6 км. Вещество земной коры состоит из минœералов и горных пород. Горные породы состоят из минœералов или продуктов их разрушения. Горные породы, содержащие полезные компоненты и отдельные минœералы, извлечениекоторых экономически целœесообразно, называют полезными ископаемыми.

Основная литература: 1

Контрольные вопросы:

1 Происхождение Солнечной системы.

2 Форма и размеры Земли.

3 Физические поля Земли.

4 Внутреннее строение Земли.

5 Строение и состав земной коры.

3 Тема лекции: Горные породы как вместилище нефти и газа . Горная порода - ϶ᴛᴏ природное, чаще всœего, твердое тело, состоящее из одного (известняк, ангидрит) или нескольких минœералов (песчаник полимиктовый, гранит). Иными словами это естественная природная ассоциация минœералов. Все горные породы по происхождению (генезису) подразделяются на три больших класса: магматические, метаморфические и осадочные.

Магматические горные породы образовались в результате внедрения магмы (силикатного расплава) в земную кору и затвердевания последней в ней (интрузивные магматические горные породы) или излияния лавы (силикатного расплава) на дно морей, океанов или земную поверхность (эффузивные магматические горные породы). И лава и магма изначально - ϶ᴛᴏ силикатные расплавы внутренних сфер Земли. Магма, внедрясь в земную кору, затвердевает в ней неизмененной, а лава, изливаясь на поверхность Земли или на дно морей и океанов, теряет растворенные в ней газы, пары воды и некоторые другие компоненты. В силу этого интрузивные магматические горные породы по своему составу, структуре и текстуре резко отличаются от эффузивных. Примером наиболее распространенных магматических горных пород могут служить гранит (интрузивная порода) и базальт (эффузивная порода).

Метаморфические горные породы образовались в результате коренного преобразования (метаморфизма) всœех других ранее существовавших горных пород под влиянием высоких температур, давлений и нередко с привносом в них или выносом из них отдельных химических элементов. Типичными представителями метаморфических горных пород являются мрамор (образовавшийся из известняка), различные сланцы и гнейсы (образовавшиеся из глинистых осадочных пород).

Осадочные горные породы образовались за счёт разрушения других, ранее слагавших земную поверхность, пород и осаждения этих минœеральных веществ в основном в водной, реже воздушной среде в результате проявления экзогенных (поверхностных) геологических процессов. Осадочные горные породы по способу (условиям) их образования подразделяются на три группы: осадочные обломочные (терригенные), органогенные и хемогенные.

Осадочные обломочные (терригенные) горные породы сложены обломками ранее существовавших минœералов и горных пород (таблица 1). Органогенные горные породы состоят из остатков (скелœетов) живых организмов и продуктов их жизнедеятельности (биологический путь образования) Хемогенные осадочные горные породы сформировались в результате выпадения химических элементов или минœералов из водных растворов (таблица 2). Типичными представителями осадочных обломочных пород являются песчаники и алевролиты, осадочных органогенных - различного типа органогенные известняки, мел, угли, горючие сланцы, нефть, осадочных хемогенных - каменная соль, гипс, ангидрит. Для геолога-нефтяника осадочные горные породы выступают главенствующими, так как они не только вмещают 99,9% мировых запасов нефти и газа, а и согласно органической теории происхождения нефти и газа, являются генераторами этих углеводородов. Осадочные горные породы слагают верхний осадочный слой земной коры, который распространен по площади Земли не повсœеместно, а только в пределах, так называемых, плит, которые входят в состав платформ – крупных стабильных участков земной коры, межгорных впадин и предгорных прогибов. Толщина осадочных пород колеблется в широких пределах от первых метров до 22-24 км в центре Прикаспийской впадины, расположенной в Западном Казахстане. Осадочный слой в нефтяной геологии принято называть осадочным чехлом. Под осадочным чехлом располагается нижний структурный этаж, именуемый фундаментом. Фундамент сложен магматическими и метаморфическими горными породами. Породы фундамента содержат всœего 0,1 % мировых запасов нефти и газа. Нефть и газ в земной коре заполняют мельчайшие и мелкие поры, трещины, каверны горной породы, подобно тому как вода насыщает губку. Следовательно, чтобы порода содержала нефть, газ и воду она должна быть качественно отличной от пород не содержащих флюидов, ᴛ.ᴇ. она должна иметь поры, трещины или каверны, должна быть пористой. Сегодня чаще всœего промышленные скопления нефти и газа содержат осадочные обломочные (терригенные) горные породы, затем идут карбонатные породы органогенного генезиса и, наконец, карбонаты хемогенные (оолитовые и трещиноватые известняки и мергели). В земной коре пористые горные породы, вмещающие нефть и газ, должны переслаиваться с качественно иными породами, которые не содержат флюидов, а выполняют функцию изоляторов нефтегазонасыщенных тел. В таблицах 1 и 2 показаны литофации горных пород, вмещающих нефть и газ и служащих флюидоупорами.

Таблица 1

Группа пород Размеры обломков, мм Рыхлые породы Сцементированные породы
Окатанные Обломки Неокатанные обломки Окатанные обломки Неокатанные обломки
Грубообломочные (псефиты) Крупные > 200 Валуны глыбы валунные конгломераты глыбовые брекчии
Средние 200-10 галька (галечник) щебень галечный конгломерат брекчия
Мелкие 10-2 Гравий бывает нефтегазонасы-щенным дресва бывает нефтегазонасы-щенной гравелиты бывают нефтегазонасыщенные (гравийные конгломераты)
Песчаные (псаммиты) 2-1 Пески грубозернистые очень часто бывают нефтегазонасыщенные Песчаники грубозернистые очень часто бывают нефтегазонасыщенные
1-0,5 Пески крупнозернистые очень часто бывают нефтегазонасыщенные Песчаники крупнозернистые очень часто бывают нефтегазонасыщенные
0,5-0,25 Пески среднезернистые очень часто бывают нефтегазонасыщенные Песчаники среднезернистые очень часто бывают нефтегазонасыщенные
0,25-0,1 Пески мелкозернистые очень часто бывают нефтегазонасыщенные Песчаники мелкозернистые очень часто бывают нефтегазонасыщенные
Алевритовые породы (алевриты) 0,1-0,01 алеврит (лесс, супесь, суглинок) часто бывает нефтегазонасыщенный алевролит часто нефтегазонасыщенный
Глинистые породы (Пелиты) < 0,01 глина (физическая) не бывает нефтегазонасыщенной (флюидоупор) аргиллит не бывает нефтегазонасыщенный (флюидоупор)

Таблица 2.

Группа пород Органогенные породы Хемогенные породы
Карбонатные известняк коралловый – (СaCO 3) (очень часто нефтегазонасыщенный) известняк-ракушечник – (СaCO 3) (очень часто нефтегазонасыщенный) известяк детритусовый – (СaCO 3) (очень часто нефтегазонасыщенный) Мел (как правило, не бывает очень часто нефтегазонасыщенным) Мергель (редко трещиноватый нефтегазонасыщенный) известняк плотный известняк оолитовый (очень часто бывает нефтегазонасыщенным) известковый туф натечный известняк доломит – (СaMgCO 3) 2 (очень часто бывает нефтегазонасыщенным) сидерит мергель (редко трещиноватый бывает нефтегазонасыщенным)
Кремнистые диатомит опока кремнистый туф кремень
Желœезистые - лимонит
Галоидные - каменная соль (самый качественный флюидоупор)
Сернокислые - Гипс CaSO 4 *H 2 O, ангидрит CaSO 4 (как правило флюидоупоры)
Алюминиевые - Боксит
Фосфатные - Фосфорит

Анализ таблицы 1 и 2 показывает, что большинство терригенных пород в природе бывают нефтегазонасыщенными. Следовательно, не случайно то, что впервые нефть и газ были обнаружены в указанных породах и длительный исторический период они добывались из этих пород. И только последние десятилетия двадцатого столетия во многих регионах были обнаружены огромные запасы нефти и газа и в карбонатных толщах. Это, в первую очередь, в коралловых, детритусовых и оолитовых известняках и доломитах. Итак, нефтегазовмещающими породами очень часто бывают следующие литофации обломочных осадочных пород: пески и песчаники, алевролиты и алевриты, гравелиты и гравий. Из группы карбонатных пород нефтегазовмещающими породами служат следующие литофации: известняк коралловый, известняк-ракучешник, детритусовый и оолитовый известняки и доломиты.

Не содержат нефти и газа, а выполняют функцию изоляторов следующие литофации осадочных пород: соль каменная – наиболее качественный флюидоупор, глина, аргиллит (нетрещиноватый), мергель (не трещиноватый), гипс и ангидрит плотные, известняк плотный пелитоморфный, мел и другие крепкие и не трещиноватые горные породы. Отдельные пористые осадочные породы могут содержать промышленные скопления углеводородов только тогда, когда они переслаиваются с породами-изоляторами не содержащими нефти и газа.

Основная литература: 4, 5

Дополнительная литература 11

Контрольные вопросы:

1. Определœение горной породы.

2. На какие группы подразделяются осадочные породы?

3. Какие литофации осадочных пород бывают коллекторами?

4. Какие литофации осадочных пород бывают флюидоупорами?

Главнейшие осадочные породы органического и химического происхождения - понятие и виды. Классификация и особенности категории "Главнейшие осадочные породы органического и химического происхождения" 2017, 2018.

Горные породы представляют собой минералы и их соединения. Невозможно представить нашу планету без минералов, фактически формирующих ее.

Система классификации

Выделяют огромное число видов пород, подразделяемых на группы. Генетически различают:

  • осадочные;
  • метаморфические;
  • магматические.

Последние делят еще на три класса:

  • плутонические;
  • гипабиссальные;
  • вулканические.

Подгруппы можно разделить на:

  • кислые;
  • средние;
  • основные;
  • ультраосновные.

Практически нереально составить полный список горных пород, учитывая все существующие на Земле виды, так их много. В рамках этой статьи мы предпримем попытку структурировать информацию о наиболее интересных и часто встречающихся типах.

Метаморфические горные породы: список

Таковые формируются под влиянием свойственных земной коре Поскольку преобразования происходят, когда вещества в твердой фазе, визуально они незаметны. Во время перехода меняются структура, текстура, состав исходной породы. Чтобы такие перемены происходили, необходимо удачное сочетание:

  • нагрева;
  • давления;
  • влияния газов, растворов.

Существует метаморфизм:

  • региональный;
  • контактовый;
  • гидротермальный;
  • пневматолитовый;
  • динамометаморфизм.

Амфиболиты

Эти минералы сформированы и плагиоклазом. Первая классифицируется как ленточный силикат. Визуально амфиболиты - это сланцы либо массивы цветов от темного зеленого до черного. Цвет зависит от того, в каком соотношении в составе минерала присутствуют темноцветные компоненты. Второстепенные минералы этой группы:

  • гранат;
  • магнетит;
  • титанит;
  • цоизит.

Гнейсы

По своей структуре гнейс исключительно близок граниту. Визуально отличить эти два минерала друг от друга возможно далеко не всегда, так как гнейс копирует гранит и близится к нему по физическим параметрам. А вот цена гнейса существенно ниже.

Гнейсы широко доступны, поэтому применимы в строительстве. Минералы разнообразны и эстетичны. Плотность высока, поэтому можно использовать камень в качестве бетонного заполнителя. При небольшой пористости и малой способности поглощать воду гнейсы имеют повышенную стойкость к вымораживанию. Так как выветривание также мало, допускается использование минерала в качестве облицовочного.

Сланцы

Составляя список горных пород, из числа метаморфических обязательно нужно упомянуть сланцы. Выделяют такие их виды, как:

  • глинистые;
  • кристаллические;
  • тальковые;
  • хлоритовые.

Благодаря необычной структуре и эстетичности этого камня, в последние годы сланец стал незаменимым декоративным материалом, используемым при строительстве.

Сланцы - это довольно большая группа, которую составляют горные породы. Список названий разновидностей, активно используемых человечеством в разных целях (в основном в строительстве, ремонте, реконструкции):

  • алевролит;
  • златалит;
  • серпантинитовый;
  • гнейсовый;
  • и филлитовый сланцы.

Кварцит

Этот камень известен своей прочностью, так как сформирован кварцем с добавлением примесей. Формируется кварцит из песчаника, когда исходные элементы минерала заменяются кварцем при региональном метаморфизме.

В природе кварцит встречается сплошным пластом. Нередки примеси:

  • гематита;
  • гранита;
  • кремния;
  • магнетита;
  • слюды.

Самые богатые залежи найдены в:

  • Индии;
  • России;
  • Канаде.

Основные особенности минерала:

  • стойкость к морозу, влаге, температурам;
  • прочность;
  • безопасность, экологическая чистота;
  • долговечность;
  • стойкость к щелочам, кислотам.

Филлит

Не последнее место в списке горных пород принадлежит филлитам. Они занимают промежуточную позицию между глинистыми и слюдяными сланцами. Материал плотный и тонкозернистый. При этом камни очевидно кристаллические, им свойственна ярко выраженная сланцеватость.

Филлиты обладают шелковистым блеском. Цветовая гамма - черный, оттенки серого. Минералы раскалываются на тонкие плиты. В составе филлитов выделяют:

  • слюду;
  • серицит.

Могут быть зерна, кристаллы:

  • альбита;
  • андалузита;
  • граната;
  • кварца.

Богаты залежи филлитов во Франции, Англии и США.

Осадочные горные породы: список

Минералы этой группы расположены преимущественно на поверхности планеты. Для формирования должны соблюдаться следующие условия:

  • низкие температуры;
  • осадки.

Выделяют три генетических подвида:

  • обломочные, представляющие собой грубые камни, сформированные при разрушении породы;
  • глинистые, происхождение которых связывают с преобразованием минералов групп «силикатные» и «алюмосиликатные»;
  • биохемо-, хемо-, органогенные. Такие формируются в процессах осаждения при наличии соответствующих растворов. В этом принимают активное участие также микроскопические и не только организмы, вещества органического происхождения. Немаловажна роль продуктов жизнедеятельности.

Из хемогенных выделяют:

  • галоидные;
  • сульфатные.

Список горных пород этой подгруппы:

  • гипс;
  • ангидриты;
  • сильвинит;
  • каменная соль;
  • карналлит.

Самые важные осадочные горные породы:

  • Доломит, подобный плотному известняку.
  • Известняк, состоящий из углекислого калия с примесью такого же магния и ряда включений. Параметры минерала варьируются, определяются составом и структурой, а также текстурой минерала. Ключевая особенность - повышенные показатели прочности на сжатие.
  • Песчаник, сформированный минеральными зернами, связанными между собой веществами природного происхождения. Прочность камня зависит от примесей и того, какое именно вещество стало связующим.

Вулканические горные породы

Обязательно должны быть упомянуты вулканические горные породы. Список таковых создают, включая сюда минералы, сформированные в ходе При этом выделяют:

  • излившиеся;
  • обломочные;
  • вулканические.
  • андезит;
  • базальт;
  • диабаз;
  • липарит;
  • трахит.

К пирокластическим, то есть обломочным, причисляют:

  • брекчии;
  • туфы.

Практически полный алфавитный список пород вулканического типа:

  • анортозит;
  • гранит;
  • габбро;
  • диорит;
  • дунит;
  • коматит;
  • латит;
  • монцонит;
  • обсидиан;
  • пегматит;
  • перидотит;
  • перлит;
  • пемза;
  • риолит;
  • сиенит;
  • тоналит;
  • фельзит;
  • шлак.

Органические горные породы

Из останков живых существ формируются органические горные породы, список которых по праву начинается с наиболее значимого вещества - мела. Эти породы принадлежат к уже рассмотренной выше группе осадочных, и важны не только с точки зрения применимости для решения разных задач человека, но и как богатый археологический материал.

Наиболее важный подвид этого типа горных пород - мел. Он широко известен и активно применяется в повседневности: именно им пишут на досках в школах.

Мел сформирован кальцитом, из которого ранее состояли панцири обитавших в древних морях водорослей кокколитофорид. Это были микроскопические организмы, в обилии населявшие нашу планету около ста миллионов лет тому назад. В тот период водоросли могли беспрепятственно плавать по огромным территориям теплого моря. Погибая, микроскопические организмы падали на дно, формируя плотный слой. Некоторые местности богаты залежами таких осадков, в толщину насчитывающими сотню метров и больше. Наиболее известны меловые холмы:

  • поволжские;
  • французские;
  • английские.

Изучая меловые породы, ученые находят в них следы:

  • морских ежей;
  • моллюсков;
  • губок.

Как правило, эти включения - это лишь несколько процентов от общего объема разведанного мела, поэтому такие компоненты не влияют на параметры породы. Изучив меловые отложения, геолог получает информацию о:

  • возрасте породы;
  • толще воды, что была тут прежде;
  • особых условиях, которые ранее существовали в изучаемой местности.

Магматические горные породы

Под магматизмом принято понимать совокупность явлений, обусловленных магмой и ее деятельностью. Магма - это силикатный расплав, в природе присутствующий в жидкой форме, близкой к огню. В составе магмы присутствует высокий процент летучих элементов. В некоторых случаях встречаются виды:

  • несиликатные;
  • низкосиликатные.

Когда магма остывает и кристаллизуется, появляются магматические горные породы. Их также именуют изверженными.

Выделяют породы:

  • интрузивные;
  • эффезивные.

Первые сформированы на большой глубине, а вторые - при извержении, то есть уже непосредственно на поверхности планеты.

Нередко в составе магмы есть разнообразные горные породы, расплавившиеся и смешавшиеся с силикатной массой. Это провоцируется:

  • повышением температуры в толще земли;
  • нагнетенным давлением;
  • сочетанием факторов.

Классический вариант магматической горной породы - гранит. Уже само его наименование на латыни - «огонь», отображает то, что порода в первоначальном состоянии была исключительно горячей. Гранит высоко ценится не только за счет своих технических параметров (этот материал невероятно прочный), но также из-за красоты, обусловленной кристаллическими вкраплениями.

Камни органического происхождения - подборка камней, фотографии, свойства, происхождение

Камни, рожденные жизнью

О камне говорят «холодный», «мертвый», «безжизненный». А ведь жизнь на Земле ненамного моложе самой планеты, и множество земных минералов сформировано живыми организмами. Нефть, по современным представлениям, есть зримый след существования микроскопических одноклеточных растений и животных далекого прошлого. Уголь еще древние естествоиспытатели считали родным братом нефти. Мел, известняк, мрамор – продукты жизнедеятельности морских существ...

На этом перечень минералов биогенного происхождения, приходящих на ум среднестатистическому человеку, обычно заканчивается. Однако знающий минеролог мог бы продолжать и продолжать список камней, появившихся на Земле исключительно благодаря существованию жизни.

Даже геммология, наука о драгоценных камнях, готова представить внушительный перечень самоцветов, каждый из которых когда-то был живым. Чемпион популярности среди драгоценностей биологической природы – жемчуг!

Перламутр – единоутробный брат жемчуга

Только формой не вышел. Если жемчужина – это образование сферическое (либо приближенное к сфере по форме), то , только отложившийся на стенках раковины.

Спрос на перламутр всегда превышал спрос на жемчуг из-за низкой цены и широкой доступности материала. Жемчуг редок, а перламутра в любой речушке – тонны. Раковины моллюсков, покрытые толстым слоем перламутра, шли на изготовление пуговиц, расчесок, рукояток и прочего ширпотреба на протяжении многих веков. Нет сегодня сорта пластмассы, который применялся бы столь широко и активно, как перламутр в недавнем прошлом.

Когда-то пальмы росли везде


...потому что было тепло и влажно. Окаменевший стволик пальмы можно обнаружить и в каменноугольных залежах, и в глинистых сланцах, и в отложениях кварца. Именно силикаты делают пальмовую древесину эстетически выразительным камнем.

Надо отметить, что по своей ботанической сути пальма – хоть и древовидное, однако травянистое растение. Годовых колец у пальм не найти! Зато продольные сосуды, по которым питательные соки циркулировали по растению, заметны очень явно. Они-то – как на поперечном, так и на продольном срезе окаменелой пальмовой древесины – составляют всю красоту камня.

Мягкая крахмалистая сердцевина пальмового ствола сосудами небогата, и потому замещается при фоссилизации однородным кремнистым материалом.


Различные кремнеземы, пропитывая стволы затопленных, засыпанных, утонувших в болотах деревьев, нередко превращают ничем не примечательную древесину в драгоценный самоцвет. Силикаты, оцвеченные разнообразными минеральными примесями, обретают радужную расцветку. Скол, спил, а еще лучше шлиф часто поражает богатством природной палитры красок.

При этом слоистая древесная структура остается, как правило, хорошо различимой. Что только добавляет декоративности красивейшему камню биологического происхождения.

Строматолитовые яшмы


Яшмовая скала Мэри Эллен расположена в штате Минессота (США). Славна она тем, что основные массы пород, слагающих гору – красная яшма и серебристый гематит – переплеты между собой в немыслимых клубах и извивах.

Красное и черное – выгодное цветовое сочетание для любого художественного сюжета. Однако строматолиты, образовавшиеся из слоистых колоний цианобоктерий два миллиарда лет назад, крайне редко обретают красный цвет. Лишь на американском континенте найдены следы первых шагов жизни по планете, сделанные красной яшмой по черной железной руде...

Окаменелые кораллы


Отполированный окаменелый вызывает желание сдувать с него пылинки – настолько тонкой является ювелирная работа природы. Ячеистые каркасы морских организмов далекого прошлого деликатно устроены и искусно «выполнены». Сходство ископаемого коралла с работой умелого мастера – бесконечно!

Кварц и кальцит, заменяя органическую ткань в окаменелых кораллах, делают украшения долговечными. Однако ярких цветов, свойственных современным кораллам, у ископаемых полипов нет. Огненно-красные либо транспарантно-желтые серьги из окаменелых кораллов – продукт кустарного «улучшательства».

«Песчаный доллар»


«Песчаным долларом» в обеих Америках зовут остов морского ежа, относимого к неправильным (такова зоологическая терминология). Правильные ежи – круглые иглокожие, неправильные – плоские. Живут они на Земле давно, и в некоторых местах так плотно населяют шельфовое дно, что лежат на песке наподобие чешуи на теле карася – а то и вообще в два слоя.

Неправильные ежи обладают очень условной игольчатой защитой, и потому кормятся ими все, кому не лень. Тем не менее, многие из плоских как игрушечное блюдце животных успевают вырастить приличной толщины остов, дожить до естественной кончины и порадовать людей видом своего скелета – «песчаного доллара». Особенно высоко ценятся доллары, «выпущенные» миллионы лет назад...

Аммониты


Всякий, кто интересовался историей эволюции, знает об аммонитах. Их – подчас довольно скромные размером, подчас под два метра диаметром – скручены в плоскую спираль, наподобие рогов бога Амона в одном из его земных воплощений. Аммониты нетрудно найти в природных осыпях. В некоторых странах Европы их издавна зовут «золотыми улитками».

Аммонитовое «золото» - это слой окаменевшего перламутра в запечатанных камерах раковин. Наиболее красивые аммониты добываются в канадской провинции Альберта. Радужное сияние полированных стенок раковин превосходит игру цвета у опала и лабрадорита.

Кость динозавра


Процесс окаменения костей чрезвычайно длителен, ведь каждая молекула фосфата кальция (из которого, собственно, и состоят кости) должна быть заменена молекулой двуокиси кремния. Скелету динозавра средних размеров требуется не менее двух миллионов лет, чтобы превратиться в драгоценный самоцвет!

К счастью, чего-чего, а времени у костей динозавров хватает с большим запасом. За 65 млн. лет, отделяющих нас от последних звероящеров Земли, многие тонны костей превратились в цветные кварцы. Более того, немалая часть кварца восприняла примеси, что позволило непривлекательному дотоле природному материалу обрести и вид, и рисунок, и фактуру на хорошем ювелирном уровне. Кабошоны из костей динозавра нередко бывают чрезвычайно привлекательными!


Слоновая кость помоложе костей динозавра. Сегодня под именем «слоновой кости» различают бивни африканского и индийского слона, ископаемых мамонтов, клыки моржа, зубы бегемота и кашалота.

Главное состоит в ее роскошном внешнем виде. Однако немаловажна и технологичность материала. Не в последнюю очередь полюбилась слоновая кость ремесленникам из-за ее способности становиться пластичной, а после – снова отвердевать.

Цвет слоновой кости различен. Ценится белый с синевой зуб бегемота, теплые оттенки (вплоть до красно-коричневого) мамонтова бивня, полупрозрачная белизна бивня молодого слона.

Перечень камней биологического происхождения можно продолжать и продолжать. Галерея драгоценных самоцветов пополняется усилиями геологов, исследователей, первопроходцев труднодоступных районов планеты.

Подобен сиянию зари


Первые жемчужины люди находили в поисках пищи. Устрицы, продуцирующие этот самоцвет, до сих пор любимы гурманами. Тысячи лет человек любовался сиянием жемчуга, выросшего по воле природы – и вот уже несколько десятилетий мы заставляем моллюсков обволакивать затравочные песчинки разноцветными слоями.

Сегодняшний жемчуг – всех цветов радуги и даже цвета ночи! Но, как и встарь, это – камень, в котором не менее половины от массы приходится на органическую ткань. Подробней мы рассматривали жемчуг в статье , и вы можете убедиться: этот камень биологического происхождения ненапрасно пребывает пятое тысячелетие подряд в фаворе у модниц!

Застывшим солнечным светом...


...поэтично именуется янтарь. И медово прозрачные, и самые «туманные» формы камня действительно производят впечатление сгустков светящейся субстанции. Несть числа разновидностям янтаря! Цветовая гамма этой природной драгоценности простирается от молочно-белого через все оттенки желтого и красного к синему и зеленому цветам. Бывают янтари и черными!

Всякий янтарь – кусочек окаменелой смолы дерева, росшего миллионы лет назад. Различают янтари, рожденные в сосновых рощах, и янтари, произошедшие из живицы тропических деревьев. О янтарях мы рассказывали в статьях: и . Теперь же пришел черед обратить внимание на деревья, росшие сотни миллионов лет назад, и к нашему времени превратившиеся в «драгоценные камни».

«Арахисовая» древесина


Древесина с четкой структуризацией массива при фоссилизации тоже может дать неожиданный визуальный эффект. Особенно интересными получаются окаменевшие древесные останки, многие годы проведшие под водой. Дело, собственно, не в воде, а в моллюсках, населяющих водоемы планеты. Некоторые из них питаются гниющей древесиной, и в процессе добычи пищи углубляются в затопленные бревна, прогрызая многочисленные ходы.

Последующая минерализация органики привела к поразительному итогу. Полости, прогрызенные (точнее, проточенные) червецом, заполнились белым кварцем. Ткани дерева остались цветными. Минерологи окрестили эту разновидность окаменевшей древесины «арахисовым лесом» - ибо сходство рисунка камня с прорастающим арахисом почти стопроцентное.

Гагат


Однако не всем растительным останкам далекого прошлого так везет. Гагат – минерал, относимый к каменному углю, признается той же самой доисторической древесиной, перенесшей затопление в иловых слоях двухсотмиллионолетней давности.

Ничем не привлекательный в необработанном виде, шлифованный гагат сияет наподобие шелкового бархата. Лучшие сорта камня отличаются зеркальным глянцем и идут на изготовление украшений. В недавнем прошлом из гагата делали множество галантерейных мелочей – вроде пуговок, бусинок, бисера. служил своим владельцам не хуже перламутра.

Кораллы


Большая часть донных морских отложений образована известковыми останками организмов, живших в незапамятные времена. Однако кораллы, отвоевав тепленькое местечко пятьсот миллионов лет назад, процветают доныне.

Известковые скелеты кораллов насчитывают три с половиной сотни вариантов природной окраски. Полированные кораллы – отличный материал для изготовления украшений. Однако пользователь должен помнить: чем гуще цвет коралла, тем больше в нем органического вещества, и тем бережнее нужно относиться к предмету.

Современные виды кораллов отличны от полипов, населявших земные моря в прошлые геологические эпохи. Однако с уверенностью можно утверждать: окаменелые кораллы чрезвычайно красивы и интересны!

Спрессованные остовы морских лилий


Морские лилии криноидеи когда-то настолько изобильно населяли неглубокое дно теплых морей, что их известковые остовы – в основном трубчатые, разделенные на короткие сегменты – стали породообразующим элементом. Множество интереснейших экземпляров этих протерозойских иглобрюхих добыто при прокладке Московского метро.

Однако криноидный известняк, образованный останками похожих на цветы животных триста миллионов лет назад, под (в буквальном смысле) Москвой не встречается. Хотя распространен этот минерал достаточно широко.

Различимые остатки криноидей, «впаянные» в толщу полупрозрачного минерала, порой бывают весьма декоративными. Такие камни становятся достойным украшением.


Под звучным именем скрывается красивейший минерал с необычной историей. Вообще-то, turritella terebra – это наименование морского моллюска с винтообразно завитой раковиной. Рассказывают, что именно ракушки турителла подсказали легендарному Архимеду устройство водоподъемного винта.

Агат-турителла – это, по сути, россыпь находящихся в разной степени сохранности ракушек моллюска данного вида, залитая отвердевшим силикатом. Многие из настоящих агатов-турителл включают в себя песок, воду, пузырьки воздуха.

Присмотритесь к внешнему виду драгоценного камня! Под именем агата-турителла нередко продают всякий окаменевший мусор. Если вы не видите отчетливо сохранившихся элементов конусно-спиральных раковин, перед вами – фальсификат!


На протяжении своего существования Земля прошла длинный ряд непрерывных изменений. Они вызываются процессами различными по скорости, по масштабности и по источникам энергии. Эти процессы перемещения вещества, видоизменяющие земную кору и поверхность Земли, называются геологическими или геодинамическими.

Эндогенными процессами называются такие геологические процессы, происхождение которых связано с глубокими недрами Земли. В недрах Земли под внешними ее оболочками происходят сложные физико-механические и физико-химические преобразования вещества, в результате которых возникают мощные силы, воздействующие на земную кору, за счет которых они преобразуют ее. Эндогенные процессы коренным образом меняют характер земной коры и, в частности, ее поверхности; они приводят к созданию основных форм рельефа поверхности Земли – горных стран и отдельных возвышенностей, огромных впадин – вместилищ океанической и морской воды и др. Основными внутренними источниками энергии Земли являются: гравитационная дифференциация, ротационные (вращательные) силы, радиоактивный распад, химические и фазовые превращения, происходящие в недрах. Процессы, вызванные этими источниками энергии, называются эндогеннымиили процессами внутренней динамики . К ним относят:

1. тектонические движения (колебательные и горообразовательные);

2. магматизм;

3. метаморфизм;

4. землетрясения;

Вторая группа процессов вызвана внешними источниками энергии и проявляется на поверхности Земли и их называют экзогенными . Это солнечная энергия и гравитация, перемещения водных и воздушных масс, влияние различных растительных и животных организмов, их воздействие на горные породы и минералы. Такие процессы называются экзогеннымиилипроцессами внешней динамики . К ним относят:

1. выветривание;

2. влияние текучих поверхностных и подземных вод;

3. влияние ледников и водно-ледниковых потоков;

4. процессы в мерзлой зоне литосферы;

5. влияние морей и океанов, озер и болот;

6. гравитационные процессы;

7. деятельность человека (техногенез).

Эндогенные и экзогенные процессы действуют одновременно и тесно связаны друг с другом (рис. 2.5)

Горные породы – природная совокупность минералов более или менее постоянного минералогического состава, образующая самостоятельное тело в земной коре

Горные породы формируются при различных процессах, протекающих как в недрах Земли, так и на ее поверхности, образуя сплавы, механические смеси, состоящие из одного (мрамор) или нескольких минералов (гранит) (рис. 2.5).

Рис. 2.5. Происхождение горных пород.

Горные породы классифицируют по происхождению (по генезису) и химическому составу. По происхождению выделяют магматические, осадочные и метаморфические породы (рис. 2.6).

Рисунок 2.6. Классификация горных пород по типу образования

Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающих 75 % площади земной поверхности.

Магматические горные породы подразделяют на интрузивные – глубинные и эффузивные – излившиеся.

Интрузивные горные породы образуются в недрах Земли в условиях высоких давлений и очень медленного остывания. Магма на глубине нескольких десятков километров от поверхности Земли находится под очень большим всесторонним гидростатическим давлением, достигающим нескольких тысяч атмосфер, и обладает высокой температурой. При внедрении магмы в вышележащие слои Земли физическая обстановка изменяется: магма встречается с твердыми и относительно холодными породами и начинает застывать и кристаллизоваться. Однако отдача тепла магмой в окружающую среду происходит очень медленно, так как теплопроводность горных пород низка. Температура магмы падает постепенно в течение миллионов лет. Примером может служить следующее наблюдение: на Северном Кавказе в районе Пятигорска интрузия магмы произошла в конце палеогенового периода (~30 млн. лет назад). Однако и в настоящее время разогретые массы магмы существуют на сравнительно небольшой глубине, на что указывают выходящие на поверхность земли горячие источники.

При медленном остывании магмы происходит постепенная и последовательная раздельная кристаллизация входящих в ее состав химических соединений, каждое из которых превращается в кристалл какого-либо минерала. Благодаря медленному росту кристаллы могут достигать относительно больших размеров, поэтому для многих интрузивных пород характерна крупно кристаллическая структура. В результате медленного остывания магмы происходит полная кристаллизация всего ее вещества, и в возникшей породе не остается аморфных участков.

Образующиеся в ходе кристаллизации минералы выпадают из расплава в определенной временной последовательности. Эту последовательность определяет степень тугоплавкости минералов, а также химический состав магмы. Большую роль в процессе кристаллизации играют летучие парообразные и газообразные вещества, способствующие и часто определяющие порядок и скорость кристаллизации минералов.

Поясним это на примере магмы гранитного состава, в результате кристаллизации которой на глубине образуется порода – гранит. В состав гранита входят такие породообразующие минералы, как полевые шпаты, кварц, из темноцветных силикатов – и реже роговая обманка (табл. 2.4). Температура плавления биотита и роговой обманки очень высокая (при 600 МПа 620–270 о С), поэтому их кристаллы образуются еще в жидкой магме.

Во вторую фазу кристаллизации возникают кристаллы полевых шпатов, температура плавления которых ниже, чем у темных силикатов (при 10 5 Па 1120 – 1250 о С). В отличие от условий первой фазы при кристаллизации полевых шпатов в жидкой массе магмы уже существуют твердые кристаллы темноцветных силикатов. Вследствие этого кристаллы полевых шпатов могут «обрастать» кристаллы биотита или роговой обманки и включать их в себя.

После кристаллизации темных и светлых силикатов порода окажется сформированной на 75-80% объема. Кремнезем, содержащийся в гранитной магме в избытке, начнет переходить в твердое кристаллическое состояние в последнюю очередь, превращаясь в кварц. Его кристаллы занимают свободное пространство между ранее образовавшимися кристаллами биотита, роговой обманки и полевого шпата и приобретать вид зерен неправильной формы, хотя внутреннее строение их кристаллической решетки вполне правильно. В итоге произойдет полная кристаллизация магмы, все ее вещество примет кристаллическое строение. Возникшая таким путем структура породы получила название полнокристаллической. Полнокристаллическая структура дает информацию о глубинных, или абиссальных , условия застывания магмы.

На больших глубинах в условиях всестороннего давления ориентировка осей и плоскостей растущих кристаллов ничем не контролируется, и расположение их в породе случайно. Подобную текстуру породы называют массивной, неориентированной; она характерна в основном для глубинных пород.

В ходе магматической интрузии возможно течение вязкой массы магмы, хотя и в ограниченных пределах. При этом кристаллы с удлиненными формами, например столбики роговых обманок и листочки слюды, ориентируются длинными осями параллельно направлению потоков в магме. Образуется так называемая флюидальная текстура . Встречаясь в интрузивных породах, она, однако, более типична для пород эффузивных.

Эффузивные горные породы образуются при излиянии на поверхность земли расплавленной магмы. При эффузии почти мгновенно, меняются температура окружающей среды и давление, снижающееся от нескольких тысяч атм. до 1 атм. В результате этого вначале начинается бурное выделение газов, растворенных в магме, сопровождающееся взрывами. Лава, выходящая из жерла вулкана, расплескивается, выбрасываясь вверх брызгами. Выделяющиеся из лавы газы могут ее вспенивать, образуя многочисленные пузыри, сохраняющиеся и при затвердевании вещества. Так образуется пузырчатая текстура. Порода подобного сложения получила название пемзы . Ее плотность настолько низка, что пемза плавает в воде.

Резко снижающаяся температура создает условия, при которых одновременно кристаллизуются многие минералы. Однако очень быстрое затвердевание вещества приводит к образованию мелких зачаточных форм кристаллов, которые можно обнаружить только под микроскопом. Значительная часть породы превращается в аморфную или стекловатую массу. Такая структура пород называется скрытокристаллической . При очень быстром остывании лавы процесс кристаллизации может и вовсе не начаться, в этом случае порода целиком будет состоять из вулканического стекла. Такая порода названа обсидианом. Это черная, темно-серая или темно-бурая порода с раковистым изломом, похожая на глыбу стекла. Полости газовых пузырей часто заполняются минералами, которые образуются вторично – в результате их кристаллизации из растворов горячих вод, проникших в застывшую лаву. При этом на фоне темно-серой породы, имеющей скрытокристаллическую структуру, выделяются округлые светлые пятна таких включений. Обычно они представлены такими минералами как кальцит и аморфный кремнезем – опал и халцедон .

С процессом извержения вулканов связано также образование группы пород, которые принято называть пиропластическими . Выделяющиеся из магмы газы часто скапливаются внутри жерла вулкана в таких больших количествах и под столь большим давлением, что возникают мощные взрывы, выбрасывающие высоко в атмосферу огромные массы лавы, состоящей из частиц самых разных размеров. Они остывают в воздухе и падают на землю в виде твердых пылинок, горошин и более крупных обломков. Их называют вулканическим пеплом . Массы этого вулканического материала покрывают окрестности извергающегося вулкана толстым рыхлым слоем. Дожди смачивают его, и он приходит в движение, образуя потоки вулканической грязи. Высыхая, грязь превращается в легкую пористую и твердую породу, называемую туфом . Подобная порода, образованная на дне моря или озера называется туффитом .

Классификация интрузивных и эффузивных пород строят на основе указанных выше особенностей структуры и текстуры, а также их химического и минералогического состава. По химическому составу магматические горные породы делят в зависимости от содержания в них окиси кремния SiO 2 (табл. 2.5). Кислые породы чаще бывают светлыми, иногда белыми. С уменьшением содержания кремнезема окраска породы изменяется от серой до темно-серой. Для ультраосновных пород характерна черная или темно-зеленая окраска, зависящая от увеличения содержания темноцветных минералов, богатых окислами железа и магния.

Таблица 2.5. Классификация магматических пород по содержанию окиси кремния.

Название группы Горные породы (примеры)
Низко и некремнеземнистые окатыши
Ультраосновные дунит, перидотит, пироксенит, кимберлит, оливинит
Основные габбро, лабродарит, базальт, диабаз, трахит
Средние сиенит, диорит, трахит, андезит, полевой шпат, порфирит
Кислые (кислотные) гранит, липарит, кварцевый порфир
Ультракислые пегматит, аляскит, пемзы, вулканическое стекло

В табл. 2.6. приведена краткая характеристика основных магматических горных пород.

Таблица 2.6. Характеристика основных магматических горных пород.

Горная порода

Минералогический

Структура

Интрузивные породы

Гранит красный, розовый, светло-серый Кварц, полевые шпаты (ортоклаз, микроклин), роговая обманка, слюды
Сиенит Полнокристаллическая, равномернозернистая и порфировидная
Габбро Плагиоклазы (от лабрадора до анортита), оливин Полнокристаллическая, равномернозернистая и порфировидная

Эффузивные породы

Пемза Пенистая, сильнопузырчатая
Вулканический туф Из различных минералов, обогащенных кремнием Пузырчатая
Вулканическое стекло (обсидиан) Кварц Стекловатая
Липарит (эффузивный аналог гранита) Кварц, полевые шпаты (ортоклаз, микроклин) Порфировая
Трахит (эффузивный аналог сиенита) Ортоклаз, микроклин, роговая обманка, биотит Порфировая, тонкопузырчатая
Базальт (эффузивный аналог габбро) Плагиоклазы, оливин, авгит Плотная, мелко-кристаллическая, скрытокристаллическая
Андезит Плагиоклазы, полевые шпаты, роговая обманка, биотит Неполнокристаллическая порфировая, мелкозернистая

Наибольшее распространение в земной коре имеют граниты (интрузивные породы), андезиты и базальты (эффузивные породы).

Граниты составляют ~30% массы земной коры. Граниты состоят в основном из трех минералов: кварца, полевого шпата и слюды (или роговой обманки).

Андезиты – породы с вкраплениями из полевых шпатов (альбита, анортита), роговой обманки, слюд и пироксена – составляют ~25% массы земной коры.

Базальты составляют ~ 20% массы земной коры, в их состав входят преимущественно полевые шпаты, пироксен, оливин. Остальное приходится на долю всех остальных горных пород.

Осадочные горные породы образуются при механическом и химическом разрушении магматических пород под действием воды, воздуха и органического вещества.

По признаку происхождения их делят на три группы: обломочные , химические и органические.

Обломочные горные породы образуются в процессах разрушения, переноса и отложения обломков горных пород. Это чаще всего каменистые осыпи, галечники, пески, суглинки, глины и лёссы. Обломочные породы разделяют по крупности:

· грубообломочные (> 2 мм); остроугольные обломки – дресва, щебень, сцементированные глинистыми сланцами, образуют брекчии , а окатанные – гравий, галька – конгломераты );

· среднеобломочные (от 2 до 0,5 мм) – образуют пески;

· мелкообломочные, или пылеватые – образуют лёссы;

· тонкообломочные, или глинистые (< 0,001 мм) – при уплотнении превращаются в глинистые сланцы.

Осадочные породы химического происхождения – соли и отложения, образующиеся из насыщенных водных растворов. Они имеют слоистое строение, состоят из галоидных, сернокислых и карбонатных минералов. К ним относятся каменная соль, гипс, карналлит, опоки, мергель, фосфориты, железо-марганцевые конкреции и т.д. (табл. 2.4). Они могут образовываться в смеси с обломочными и органическими отложениями.

Мергель образуется при вымывании из известняков карбоната кальция, содержит глинистые частицы, плотный, светлый.

Железо-марганцевые конкреции образуются из коллоидных растворов и под действием микроорганизмов и создают шариковидные залежи железных руд. Фосфориты образуются в форме шишковидных конкреций неправильной формы, при слиянии которых возникают фосфоритные плиты – залежи фосфоритовых руд серого и буроватого цветов.

Горные породы органического происхождения широко распространены в природе – это останки животных и растений: кораллы, известняки, ракушечники, радиоляриевые, диатомовые и различные черные органические илы, торф, каменные и бурые угли, нефть.

Осадочная толща земной коры формируется под воздействием климата, ледников, стока, почвообразования, жизнедеятельности организмов, и ей присуща зональность : зональные донные илы в Мировом океане и континентальные отложения на суше (ледниковые и водно-ледниковые в полярных областях, торф в тайге, соли в пустыне и т. д.). Осадочные толщи накапливались в течение многих миллионов лет. За это время картина зональности многократно менялась в связи с переменами в положении оси вращения Земли и другими астрономическими причинами. Для каждой конкретной геологической эпохи можно восстановить систему зон с соответствующей ей дифференциацией процессов осадконакопления. Строение современной осадочной оболочки – это результаты перекрытия множества разновременных зональных систем.

На большей части территории земного шара почвообразование идет на осадочных горных породах. В северной части Азии, Европы и Америки обширные пространства заняты породами, отложенными ледниками четвертичного периода (мореной) и продуктами размывания их талыми ледниковыми водами.

Моренные суглинки и супеси. Эти породы отличаются неоднородностью состава: они представляют сочетание глины, песка и валунов различного размера. Супесчаные почвы содержат больше Si0 2 и меньше других окислов. Окраска большей частью красно-бурая, иногда палевая или светло-бурая; сложение плотное. Более благоприятную среду для растений представляют моренные отложения, содержащие валуны известковых пород.

Покровные глины и суглинки - безвалунные, мелкоземистые породы. Состоят преимущественно из частиц меньше 0,05 мм в диаметре. Окраска буровато-желтая, большей частью обладают мелкой пористостью. Содержат больше элементов питания, чем описанные выше пески.

Лессовидные суглинки и лессы – безвалунные, мелкоземистые, карбонатные, палевые и желто-палевые, мелкопористые породы. Для типичных лессов характерно преобладание частиц диаметром 0,05-0,01 мм. Встречаются также разновидности с преобладанием частиц диаметром меньше 0,01 мм. Содержание углекислого кальция колеблется от 10 до 50%. Верхние слои лессовидных суглинков нередко бывают освобождены от углекислого кальция. В бескарбонатной части преобладают кварц, полевые шпаты, глинистые минералы.

Красноцветная кора выветривания. В странах с тропическим и субтропическим климатом широко распространены мелкоземистые отложения третичного возраста. Они отличаются красноватой окраской, сильно обогащены алюминием и железом и обеднены другими элементами.

Коренные породы. На значительных территориях на поверхность выходят морские и континентальные породы дочетвертичного возраста, объединяемые под названием «коренные породы». Названные породы особенно распространены в Поволжье, а также в предгорьях и горных странах. Среди коренных пород широко распространены карбонатные и мергелистые суглинки и глины, известняки, а также песчаные отложения. Следует отметить обогащенность многих песчаных коренных пород элементами питания. Кроме кварца эти пески содержат значительные количества других минералов: слюд, полевых шпатов, некоторых силикатов и т. д. В качестве материнской горной породы они резко отличаются от древнеаллювиальных кварцевых песков. Состав коренных пород очень разнообразен и недостаточно изучен.

Метаморфические горные породы – это магматические и осадочные горные породы, измененные температурой, давлением и химически активными веществами. Метаморфоза горных пород происходит под влиянием следующих факторов:

Давления, возникающего при горообразовательных процессах;

Повышения температуры, вызванного внедряющейся в литосферу магмой, горячих водных растворов и газов, несущих новые химически активные соединения;

Давления вышележащих горных пород.

Одна из последних классификаций метаморфизма приведена в табл. 2.6.

Таблица 2.6.Классификация метаморфизма горных пород

Тип метаморфизма Факторы метаморфизма
Метаморфизм погружения Увеличение давления, циркуляция водных растворов
Метаморфизм нагревания Рост температуры
Метаморфизм гидратации Взаимодействие горных пород с водными растворами
Дислокационный метаморфизм Тектонические деформации
Импактный (ударный) метаморфизм Падение крупных метеоритов, мощные эндогенные взрывы

Например, при накоплении осадочных горных пород мощностью 10 – 14 км нижние их слои испытывают огромное давление, сопровождающееся повышением температуры и перекристаллизацией всего материала. В результате этого процесса из глин образуются сначала сланцы, а затем гнейсы, напоминающие по составу гранит. Состав гнейсов различен. Из песков в присутствии соединений железа сначала образуются песчаники, очень легко рассыпающиеся при приложении небольших усилий, а затем кварциты, т.е. кристаллическая горная порода. Кварциты и гнейсы сохраняют слоистое строение, характерное для осадочных пород. Известняки при перекристаллизации образуют мрамор.

Таким образом, процессы метаморфизма как бы заключают цикл изменений, происходящих с горными породами.



Натуральный камень – древнейший строительный материал. В связи с трудоемкостью обработки раньше из него возводили в основном культовые, оборонительные и дворцовые сооружения, многие из которых считаются чудесами света – египетские пирамиды, пирамида ацтеков, Великая Китайская стена, мавзолей Тадж Махал... Сегодняшний уровень развития камнеобработки позволяет использовать камень в массовом строительстве – как для внешней, так и для внутренней отделки зданий.
Но у каждого камня есть свои особенности, которые объясняются его физическими свойствами.

Происхождение и классификация горных пород

Камень относится к числу горных пород. Горными породами называют природные образования, состоящие из отдельных минералов и их ассоциаций. Изучением состава, происхождения и физических свойств горных пород занимается наука петрография. Согласно ее данным, по своему происхождению все породы делятся на триосновные группы:

1. Изверженные (первичные)
2. Осадочные (вторичные)
3. Метаморфические (видоизмененные).

Изверженные породы образовались непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате ее охлаждения и застывания. В зависимости от условий застывания различают глубинные и излившиеся горные породы.
Глубинные возникли в результате постепенного остывания магмы при высоком давлении внутри земной коры. В этих условиях составляющие магмы кристаллизовались, благодаря чему образовались массивные плотные породы с полнокристаллической структурой: граниты, сиениты, лабрадориты и габбро.
Излившиеся породы образовались в результате вулканического извержения магмы, которая быстро остывала на поверхности при низкой температуре и давлении. Времени для образования кристаллов было недостаточно, поэтому породы этой группы имеют скрыто или мелкокристаллическую структуру и большую пористость: порфиры, базальты, вулканические туфы, пеплы и пемзы.

Осадочные горные породы называют вторичными, поскольку они образовались в результате разрушения изверженных пород или из продуктов жизнедеятельности растений и животных организмов. Один из способов формирования этих горных пород – химические осадки, образующиеся в процессе высыхания озер и заливов. В результате в осадок выпадают различные соединения, которые со временем превращаются в травертин, доломит. Общая особенность этих пород – пористость, трещиноватость, растворяемость в воде.
К обломочным осадочным породам относятся сцементированные отложения (песчаники, брекчии, конгломераты) и рыхлые (пески, глины, гравий и щебень). Сцементированные отложения образовались из рыхлых. Например, песчаник – из кварцевого песка с известковым цементом, брекчия – из сцементированного щебня, а конгломерат – из гальки. Еще известны породы органического происхождения – известняки и мел. Они образуются в результата жизнедеятельности животных организмов и растений.

Метаморфические породы образовались путем превращения изверженных и осадочных горных пород в новый вид камня под воздействием высокой температуры, давления и химических процессов. Среди метаморфических пород различают массивные (зернистые), к которым относятся мрамор и кварциты, а также сланцеватые – гнейсы и сланцы.

СВОЙСТВА ГОРНЫХ ПОРОД

Декоративность
Важное свойство горных пород, позволяющее использовать их в качестве облицовочного материала, – декоративность. Имеется в виду эстетическая привлекательность природного камня, в первую очередь его цвет и рисунок.

Прочность
Если говорить об использовании натурального камня в строительстве, то в этом смысле одним из важнейших его свойств является прочность, от которой зависит износостойкость материала. Чем прочнее камень, тем дольше он прослужит.
В зависимости от твердости минералов, входящих в состав горной породы и в значительной степени определяющих ее свойства, камни условно делятся на три группы:
прочные – кварциты, граниты, габбро;
средней прочности – мрамор, известняки, травертины;
низкой прочности – рыхлые известняки, туфы.

Плотность
Плотность – это масса единичного объема вещества. От этого показателя зависит вес конструкции: чем выше плотность камня, тем конструкция будет тяжелее. По плотности камни делятся на легкие (плотность до 2200 кг/м3) и тяжелые (плотность более 2200 кг/м3). Плотность зависит от пористости породы и минералов, входящих в ее состав.

Пористость
Пористость камня, который используется в качестве облицовочного материала, является одной из важнейших его характеристик. От пористости зависит водопоглощение и, соответственно, соле и кислотостойкость. А это основные показатели, влияющие на долговечность материала. Кроме того, общая пористость определяет прочность, теплопроводность, полируемость, обрабатываемость, декоративность камня и другие качественные характеристики. С повышением общей пористости снижается прочность и объем камня, ухудшается его полируемость, но уменьшается вес изделия и улучшается его способность к обработке.

Водопоглощение, соле, кислото и морозостойкость
Другим важным свойством горных пород, связанным с пористостью, является показатель водопоглощения. От него и от минерального состава материала зависит кислото- и солестойкость камня, а также его морозостойкость. Ведь при замерзании вода в порах увеличивается в объеме на 9%, создавая мощное давление. Вода, проникая в поры материалов, оставляет на них после высыхания концентрированные растворы солей. Из них начинается рост кристаллов, создающих огромное кристаллизационное давление. При высоком водопоглощении и низкой пористости под этим давлением в материале образуются трещины. При высокой пористости камня кристаллизационное давление распределяется равномерно, и новые трещины не образуются (яркий пример – известняк). Кислотостойкость – свойство пород и материалов реагировать с различными кислотами, разрушая или преобразовывая горные породы. Мрамор реагирует на кислоты, в том числе на пищевые (лимонная, уксусная). Мрамор, травертины, известняки и доломиты разрушаются от действия соляной кислоты. Правда, в природе в свободном виде она не встречается, но в городах, где хлориды используют для борьбы со снегом, этот фактор риска значительно возрастает.
Все это означает, что в наружной отделке зданий лучше использовать породы, которые не разрушаются под воздействием неблагоприятных факторов и долго сохраняют свой внешний вид, гранит и известняк. Известняк хорош для цокольных конструкций. Недаром во всех крупных городах, стоящих в долинах рек и имеющих многовековую историю (Лондон, Париж, Кельн, Москва), все цоколи зданий сложены из известняка. В Москве, кстати, из известняка сложен цоколь стен и башен Московского Кремля. Для цоколя можно использовать и гранит, но в этом случае движение солей пойдет по кладочным швам.

Классификация пород по степени истираемости

Интенсивность людского потока

Фактурная обработка поверхности камня

Для придания камню дополнительной эстетики его подвергают различной фактурной обработке, которая может выявить и подчеркнуть декоративные свойства камня или, наоборот, затушевать их. В процессе такой обработки лицевую часть каменной плиты обрабатывают различными инструментами, создавая декоративный рельеф.
Фактура «Скала». Грубый рельеф камня получается в результате скалывания больших кусков с обрабатываемой детали. Получается естественный скол камня с перепадами высот рельефа до 5 – 15см. Эта фактура выполняется как механически, так и вручную.
Точечная фактура. Ровная поверхность с точечными выбоинами.
Пиленая фактура. Достигается путем обработки камня алмазными дисковыми пилами. В итоге получается шероховатая поверхность с продольными канавами и перепадами высоты до 5 мм.
Термообработка. Под воздействием высокотемпературной газовой струи поверхность камня становится шероховатой, со следами шелушения и хорошо выраженной структурой. Перепад высот – до 5 мм.
Шлифованная фактура. Ровная, слегка шероховатая поверхность камня со следами обработки абразивным инструментом. Перепад высот – 2 мм. Рисунок, цвет и структура камня проявляются в данном случае слабо, но общий фон становится светлее.
Лощеная фактура. Гладкая матовая поверхность без видимых следов обработки абразивным инструментом, с явно выраженным рисунком камня.
Полированная фактура. Иногда процесс полировки называют еще накаткой глянца, так как для этой фактуры характерен зеркальный блеск поверхности. Гладкая поверхность камня четко отражает детали предметов. Полировка полностью выявляет и подчеркивает природный цвет и рисунок камня.
людского потока

ПРИМЕНЕНИЕ ГОРНЫХ ПОРОД

Граниты
Гранит (от латинского «гранум» – зерно) – самая распространенная горная порода. Имеет ярко выраженную зернисто-кристаллическую структуру и состоит в основном из полевых шпатов, кварца, слюды и других минералов. По величине зерен граниты делятся на мелкозернистые, среднезернистые, крупнозернистые. Цветовая «палитра» гранита чрезвычайно богата. Чаще всего встречается серый гранит разных оттенков – от светлого до темного. Бывает также розовый, оранжевый, красный, голубовато-серый и иногда голубовато-зеленый гранит. Исключительно редки граниты с голубым кварцем. Наиболее ценными в декоративном отношении считаются следующие разновидности гранитов: мелкозернистые светло-серые с голубым оттенком, насыщенно темно-красные и зеленовато-голубые. Гранит хорошо полируется, сохраняя зеркальный блеск поверхности в течение долгого времени, легко поддается теске, что позволяет создавать различные фактуры. Для создания декоративных эффектов некоторые разновидности гранитов подвергают термической обработке. Светло-серые граниты приобретают после этого нежный сахарно-белый оттенок.
Благодаря своим высоким механическим показателям и эксплуатационным свойствам гранит широко применяется в строительстве цокольных конструкций, в облицовке набережных, фасадов зданий, а также пола в местах с большим человекопотоком. Мелкозернистый гранит используют в скульптуре (поскольку его структура позволяет проводить ударную обработку), а крупнозернистый – для возведения монументальных сооружений. Очень часто к гранитам относят сиениты, которые отличаются от гранитов менее выраженной зернистостью и отсутствием кварца (благодаря этому они лучше поддаются обработке). Сиениты темнее гранитов: обычно они имеют серый, темно-серый, серо-голубой, темно-розовый цвета. Применяются в строительстве точно так же, как и граниты.

Габбро
Габбро – глубинная зернисто_кристаллическая порода. Имеет ту же структуру, что и гранит: мелко-, средне- и крупнозернистую. Отличается повышенной вязкостью и стойкостью к выветриванию. В габбро отсутствует кварц, поэтому камень легко поддается механической обработке, очень хорошо полируется и долго сохраняет блеск поверхности. Габбро представлен цветовыми оттенками от темного серо-зеленого до черного. Благодаря некоторой прозрачности плагиоклаза полированная поверхность камня приобретает хорошо выраженную глубину, что выгодно отличает габбро от других горных пород черного цвета. Например, от базальта. Довольно эффектно выглядит сочетание черного полированного и светло-серого сколотого
габбро, которое используют при составлении рисунков и орнаментов. В качестве облицовочного материала обычно применяют мелкозернистый зеленовато-черный и черный габбро. Габбро отлично переносит морозы. Поэтому его широко используют для облицовки фасадов, отделки общественных зданий, при создании монументальных сооружений, реже – в частных интерьрах. Полы из габбро в местах с интенсивным движением быстро теряют полировку.

Лабрадориты
Название этому камню дал полуостров Лабрадор, где он был впервые обнаружен. Лабрадорит – глубинная зернисто-кристаллическая порода, основным составляющим которой является плагиоклаз лабрадор. Выделяют два вида лабрадоритов: черные и серые.Чаще встречаются черные лабрадориты.
Особенный декоративный эффект придают этому камню мерцающие радужные пятна на поверхности: сине-зеленых, васильковых, золотисто-желтых, красных оттенков. Камни в голубых, синих и зеленоватых тонах увеличивают декоративную ценность породы. Лабрадорит чаще всего используется в полированном виде. Камень обладает высокой прочностью и морозостойкостью, что позволяет с успехом применять его во внешней отделке зданий. Но его используют и внутри помещений – для облицовки полов, цоколей стен, колонн. Кстати, черный лабрадорит использовали при строительстве храма Христа Спасителя в Москве в 1851 году.

Песчаники
Песчаник – осадочная порода, состоящая из сцементированного песка. К наиболее прочным относятся кремнистые песчаники. Песчаники бывают серого, зеленого, красного, желтого, коричневого и бурого цветов. Декоративными считаются мелко-зернистые красные, шоколадно-коричневые и зеленые разновидности песчаника, которые с успехом используются для наружной облицовки. В московских и петербургских зданиях, построенных в XIX – начале XXвека, хорошо сохранилась облицовка из польского песчаника серо-зеленого, желтого и розового оттенков. А Соборная площадь Московского Кремля облицована люберецким песчаником.
Однако песчаник довольно пористый материал, поэтому использовать его для отделки элементов, соприкасающихся с водой, нежелательно (в первую очередь речь идет о цокольных конструкциях). Песчаники не поддаются полировке, поэтому самые популярные фактуры песчаника – фактура скалывания, пиленая, иногда шлифованная фактура.

Известняки
Это порода органического и органо_химического происхождения, состоящая главным образом из кальцита, часто с примесью кварца, глинистых и песчаных частиц. Нередко содержит остатки известковых скелетов ископаемых организмов. Известняки имеют белый, светло-серый, желтоватый, реже – розоватый цвета. Наиболее ценными в декоративном смысле считаются белые известняки с желтым и розовым оттенком. В зависимости от структуры известняк делится на плотный, пористый и мраморовидный. Плотные известняки используются при изготовлении плит для наружной и внутренней облицовки. К ним относятся, в частности, знаменитые мячковские, коробчеевские и ковровские известняки, из которых русские архитекторы возводили чудеса белокаменного зодчества. В группе известняков встречаются и морозостойкие разновидности. Чтобы в этом убедиться, достаточно посмотреть на прекрасно сохранившиеся постройки XIII – XIV веков. Среди пористых известняков тоже выделяют несколько разновидностей. Например, оолитовые известняки имеют грубозернистую структуру с округлыми кальцитовыми образованиями. Обычно они применяются как строительный материал для стен, реже – для облицовки фасадов. Ракушечные известняки (ракушечники) – довольно пористые породы, состоящие из раковин моллюсков и их обломков, скрепленных известковым цементом. Некоторые виды ракушечников считаются декоративными: например, чисто-белые, розовые, золотисто-желтые с большим содержанием ракушек. Ракушечники легко поддаются обработке режущим инструментом, а некоторые виды можно даже полировать (правда, без получения декоративного блеска). Ракушечники широко используются в качестве строительного материала для стен, а также для наружной и внутренней облицовки зданий.

Мрамор
Название «мрамор» произошло от греческого «мармарос», что значит – блестящий. Эта зернисто-кристаллическая порода появилась в результате перекристаллизации известняка и доломита под воздействием высокой температуры и давления. Но в строительстве словом «мрамор» называют не только этот камень, но и другие породы, похожие на него. Например, мраморовидные известняки и доломиты. В подавляющем большинстве мрамор хорошо поддается обработке любыми инструментами, что позволяет расширить и без того богатый спектр его цветов. Например, полировка усиливает рисунок и цвет мрамора, шлифовка снижает его яркость и четкость,а фактура скалывания абсолютно скрывает рисунок, но значительно осветляет общий фон. Хотя это можно отнести к любому камню. По декоративным свойствам, возможностям обработки и широте применения мрамор делят на белый, серый и цветной.
Белый мрамор практически не содержит примесей, поэтому он часто однороден, имеет мелко- и среднезернистую структуру. Этот мрамор легко поддается обработке. Наиболее ценным считается мелкозернистый белый мрамор, который славится теплым тоном и тем, что он просвечивается. Этот камень также называют статуарным, так как его широко используют в скульптуре. Белый мрамор считается очень капризным, домашним камнем, что связано с его особой структурой: он слабо защищен от образования пятен и пожелтения. Это касается в первую очередь недорогих сортов. Такой мрамор следует с осторожностью применять при облицовке фасадов. Безусловно, его технические характеристики позволяют переживать и лютые морозы, и механические повреждения, однако через некоторое время он может потерять свою красоту и блеск, потускнеть и покрыться желтыми пятнами. Серый мрамор чаще всего неоднороден имеет слоистую расцветку. Характерный рисунок серого мрамора – «облачный» и «снежно-пейзажный». Этот вид мрамора легко обрабатывается и полируется. Его так же как и белый мрамор используют для наружной и внутренней облицовки. Среди цветного мрамора редкими считаются сине-голубые разновидности. Все они хорошо поддаются полировке. Теплостойкие качества мрамора позволяют применять этот камень для наружной облицовки каминов или помещений, связанных с повышенной температурой. Коэффициент водопоглощения мрамора так же, как у гранита, довольно низкий, поэтому его можно использовать при строительстве бассейнов, ванн и фонтанов. Но лучше всего отделывать мрамором интерьеры.

Кварцит
Мелкозернистые породы, которые образовались при перекристаллизации кремнистых песчаников и состоят в основном из кварца. Бывают серого, розового, желтого, малиново-красного, темно-вишневого и иногда белого цветов. Кварцит считается очень красивым камнем, особенно малиново-красные и темно-вишневые его разновидности. Фактура скалывания значительно осветляет общий фон камня, чем часто пользуются, совмещая ее с контрастным цветом полированной фактуры. Кварцит отличается очень высокой твердостью и относится к труднообрабатываемым материалам, однако поддается полировке очень высокого качества.
Этот камень применяют в монументальном искусстве и при строительстве уникальных архитектурных сооружений (например, при сооружении храма Спаса на Крови). Кроме того, на протяжении многих столетий кварцит использовался и как ритуальный камень: из него сделан саркофаг Наполеона, Александра II, верхняя часть Мавзолея Ленина.

Сланец
Эта плотная и твердая горная порода образовалась в основном из сильно уплотнившейся глины, которая частично перекристаллизовалась под высоким односторонним давлением. Характерная особенность сланцев – способность раскалываться на тонкие пластины. Цвета – темно-серый, черный, серо-коричневый, красно-коричневый. Сланец довольно долговечный материал, поддается обработке (расслаивается на тонкие пластины), некоторые виды можно полировать. Однако часто сланцы используют вообще без всякой обработки, потому что их поверхность на месте раскола сама по себе достаточно декоративна. Сланец используют в наружной и внутренней облицовке стен и полов. Например, полы Исаакиевского собора в Санкт_Петербурге частично сделаны из сланца. В Европе им часто покрывают крыши домов.

Полудрагоценные камни
К их числу относятся в основном горные породы, которые еще называют декоративно-поделочными камнями: яшма, оникс, опал, малахит, лазурит. Эти камни встречаются гораздо реже и ценятся гораздо больше прочих. Облицовывать ими большие участки поверхности довольно дорого, поэтому чаще всего полудрагоценными камнями отделывают небольшие элементы интерьера: детали колонн, подоконников, ванных комнат, а также мозаичные фрагменты. Одним из самых распространенных декоративно-поделочных камней считается оникс (в переводе с греческого «ноготь»). Ониксы имеют слоистое или радикально-лучистое строение. Бывают белого, светло-желтого, желтого, коричневого, темно-бурого, бледно-зеленого цветов. В рисунке чередуются полосы разных оттенков. Большинство мраморных ониксов просвечиваются, иногда на глубину до 30 – 40 мм. Оникс хорошо обрабатывается режущими и шлифовальными инструментами и поддается полировке высокого качества. Яркий пример использования оникса в отделке интерьера – витражи на станции метро «Динамо» в Москве.

КАКИЕ ПРОБЛЕМЫ МОГУТ ВОЗНИКНУТЬ С ОБЛИЦОВКОЙ ИЗ КАМНЯ

Пожелтение – проблема в первую очередь всех светлых сортов мрамора. Некоторые виды мрамора, например «Коэлга», могут желтеть сами по себе, особенно если этому способствует внешняя среда (морозы, перепады температуры). Мрамор, в отличие от гранита, считается очень капризным, домашним камнем, поэтому его следует с осторожностью применять при облицовке фасадов. У появления желтого пятна может быть и другая, «механическая» причина. Скажем, если во время укладки в бетонную стяжку случайно попал какой-нибудь металлический предмет (к примеру, гвоздь). Под воздействием воды и воздуха он может начать ржаветь. Этот процесс сразу же отразится на мраморной плите – ведь на мраморе хорошо проступают пятна. К сожалению, этот участок мраморной плиты очистке не подлежит. Чтобы мрамор не пожелтел, его нужно укладывать на белые клеевые составы. На кухне мраморную облицовку нужно использовать осторожно, особенно если делать из мрамора столешницу. Если же все-таки без мраморной столешницы не обойтись, ее обязательно нужно защитить гидрофобными химическими составами. Потускнение грозит в основном полированным мраморам, уложенным на пол. С течением времени блестящая полировка мрамора стирается, уступая место тусклой шероховатости. Мрамор подвержен истиранию больше, чем, например, гранит. Поэтому полированный мрамор не рекомендуется укладывать в местах интенсивного движения: в прихожей, холле и т.п. Чтобы мрамор не потускнел, с самого начала можно использовать шлифованный камень с вощением. Здесь та же ситуация, что и с деревянным полом. Если покрыть его лаком, то он со временем сотрется, а для восстановления внешнего вида потребуется снять старый лак и нанести новый. Если же дерево покрыть воском, то в дальнейшем после нанесения спецсредств оно легко восстанавливает свой блеск. То же самое и с мрамором. Потускневший полированный мраморный пол требует переполировки, а вощеный мрамор достаточно заново покрыть специальным составом. Блес получается более глубокий и матовый, не такой зеркальный, как при полировке. Кроме того, полированный мрамор впитывает воду, а вощение создает гидрофобную защиту.
Сильное скольжение – свойство полированного гранита, уложенного на улице (на крыльце, на лестнице) или на полу. Коэффициент скольжения гранита с таким видом обработки очень высок.
Если прибавить к этому такие погодные условия, как дождь или снег, то хождение по полированной поверхности становится травмоопасным. Поэтому на улице не рекомендуется использовать полированный гранит без противоскользящих полос, нанесенных с помощью корунда или методом термообработки.

УХОД ЗА ПРИРОДНЫМ КАМНЕМ

Сейчас существует различные химические средства, позволяющие дольше сохранить натуральный цвет и блеск природного камня. Специальной шпаклевочной массой, подобранной по цвету, можно устранить мельчайшие трещинки и поры на поверхности камня, образующиеся в процессе его механической обработки. Это предохранит облицовку от попадания туда микроорганизмов. В зависимости от области применения камня его обрабатывают водо - или грязеотталкивающим составом. Кроме того, есть средства для постоянного ухода за изделиями из камня. Скажем, мягкие чистящие шампуни для ежедневного ухода и для разового применения (например, для удаления пятен). Специальные полироли придают блеск полированным поверхностям, грязезащитные средства снижают риск посадить пятно на каменную облицовку, различные защитные вещества препятствуют возникновению царапин и других механических повреждений. Это, конечно, далеко не все химические составы, предназначенные для ухода за камнем. На самом деле их гораздо больше.