Бухучет и налоги

Электронный луч. Электронные пучки

Особенности образования отверстий при электронно-лучевой обработке:

Термическая размерная обработка, как правило, предназначена для изменения химического состава или структуры обрабатываемого материала, получения отверстий заданного диаметра или пазов заданной ширины, глубины и профиля сечения.

Результат размерной обработки зависит от поведения материала при повышении температуры. В результате термической размерной обработки происходят следующие явления:

фазовые превращения в твердом состоянии, появляющиеся, например, при закалке соответствующих сталей;

сублимация - удаление материала при выполнении отверстий, пазов, резании, гравировании алмаза, графита, кварцевого стекла;

разложение твердого материала на летучие компоненты и унос мате-риала при резании синтетических материалов, керамики, бумаги;

разложение с образованием, по крайней мере, одного твердого компонента и удаление материала при резании, сверлении, гравировании арсенида галлия, фосфида галлия;

плавление материалов при микросварке металлов, полировании ме-таллов и полупроводниковых материалов (кремний, германий), нанесении рисок оплавлением (кремний, германий, керамика, ферриты), легировании полупроводников путем вплавления лигатур при изготовлении полупроводниковых приборов и интегральных микросхем;

испарение - удаление материала при сверлении, резании, гравировании металлов, диэлектриков, синтетических материалов.

Обрабатываемость материала в основном зависит от его теплофизи-ческих свойств и удельной мощности пучка электронов. Чтобы избежать избытка жидкой фазы, добиться максимальной производительности за счет реализации резононсных режимов нагрева, обработку ведут в импульсных режимах.При этом возможны следующие технические варианты обработки: моноимпульсная, многоимпульсная, с быстрым отклонением луча.

Выброс жидкой фазы при обработке. Экспериментальные данные различ-ных исследователей по измерению удельной работы разрушения показывают, что практически для всех металлов больше энергии плавления, но меньше энергии превращения в пар.

В продуктах выброса находится значительное количество жидкой фазы. Затраты введенной энергии, приводящие к удалению вещества при обработке и при сварке с «кинжальным» проплавлением, например, сталей только на 10-20 % превышают затраты на плавление. Это приводит к малому различию в энергетических балансах процессов получения отверстий и проплавления и существенно упрощает их тепловые расчеты.

Причины преждевременного вскипания вещества, приводящего к выносу жидкой фазы в основном можно свести к двум моментам:

Вскипанию за счет гетерогенных центров зарождения паровой фазы,

Вследствие перегрева. В первом случае факторами, облегчающими вскипание, являются: пузырьки растворенного в металле газа, объем которого может превышать объем основного металла в десятки и даже сотни раз; неидеальность контактов; локальные пульсации температуры, например вследствие неоднородности временной структуры импульса энергии, приводящие к генерации внутрь материала волн сжатия и разрежения как и при ультразвуковых колебаниях.

Объяснить причины вскипания при перегреве затруднительно из-за сложности физики процесса. Перегрев может возникать вследствие того, что нагрев и плавление металла в зоне действия луча происходят в условиях сжатия материала давлением отдачи паров. Так как разгрузка в распла-вленном объеме после прекращения действия импульса энергии проис-ходит за время 10~ 3 -10~ 4 с, т. е. со скоростью распространения волн напряжения (скоростью звука), то металл практически мгновенно заметно перегревается, что равносильно быстрому избыточному тепловыделе-нию в локальном объеме.

Согласно другой точке зрения, перегрев связан с наличием в зоне дей-ствия луча двух слоев с разным характерным временем изменения темпе-ратуры. Если при колебаниях интенсивности нагрева внутренние слои жидкой фазы попадают в условия перегрева, то происходит вскипание, так как, одновременно является временем релаксации давления отдачи.

Вскипание и вынос жидкой фазы могут быть связаны с периодическими (вследствие экранировки) колебаниями давления отдачи паров при поверхностном испарении, которые приводят к генерации в жидком объеме металла механических колебаний, стимулирующих рост равновесных пузырьков растворенного газа.

Сварка электронным лучом

Электронно-лучевая сварка (ЭЛС) основана на использовании для нагрева энергии электронного луча.

Сущность данного процесса состоит в использовании кинетической энергии электронов, движущихся в высоком вакууме с большой скоростью. При бомбардировке электронами поверхности металла подавляющая часть кинетической энергии электронов превращается в теплоту, которая используется для расплавления металла.

Для сварки необходимо получить свободные электроны, сконцентрировать их и сообщить им большую скорость с целью увеличения их энергии, которая должна превратиться в теплоту при торможении в свариваемом металле.Получение свободных электронов достигается применением раскаленного металлического катода, эмитирующего (испускающего) электроны. Ускорение электронов обеспечивается электрическим полем с высокой разностью потенциалов между катодом и анодом. Фокусировка - концентрация электронов - достигается использованием кольцевых магнитных полей. Резкое торможение электронного потока происходит автоматически при внедрении электронов в металл. Электронный луч, используемый для сварки, создается в специальном приборе - электронной пушке.

Электронная пушка представляет собой устройство, с помощью которого получают узкие электронные пучки с большой плотностью энергии (см. рис.2).

Рис. 2. Схема устройства электронно-лучевой пушки.

(1), Пушка имеет катод (1), который размещен внутри прикатодного электрода (2). На некотором удалении от катода находится ускоряющий электрод - анод (3) с отверстием.

Прикатодный и ускоряющий электроды имеют форму, обеспечивающую такое строение электрического поля между ними, которое фокусирует электроны в пучок с диаметром, равным диаметру отверстия в аноде. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроды, эмитированные катодом, на пути к аноду приобретают значительную скорость и, соответственно, кинетическую энергию. После ускоряющего электрода электроны движутся равномерно. Питание пушки электрической энергией осуществляется от высоковольтного источника постоянного тока. Электроны имеют одинаковый заряд, поэтому они отталкиваются друг от друга, вследствие чего диаметр пучка увеличивается, а плотность энергии в пучке уменьшается.

Для увеличения плотности энергии в луче после выхода электродов из анода электроны фокусируются магнитным полем в специальной магнитной линзе (4). Сфокусированные в плотный пучок летящие электроны ударяются с большой скоростью о поверхность изделия (6), при этом кинетическая энергия электронов, вследствие торможения в веществе, превращается в теплоту, нагревая металл до высоких температур.

Для перемещения луча по свариваемому изделию на пути электронов помещают магнитную отклоняющую систему (5), позволяющую направлять электронный луч точно по сварочному стыку.

Для обеспечения беспрепятственного движения электронов от катода к аноду и далее к изделию, для тепловой и химической изоляции катода, а также для предотвращения возможности дугового разряда между электродами в установке создается высокий вакуум не ниже 1,3 . 10~ 2 Па (1 . 10 -4 мм рт. ст.), обеспечиваемый вакуумной системой установки.

Работа, затраченная электрическим полем на перемещение заряда из одной точки в другую, равна произведению величины заряда на разность потенциалов между этими двумя точками. Эта работа затрачивается на сообщение электрону кинетической энергии.

Таким образом энергия электронов может достигать больших значений и зависит от разности потенциалов разгоняющего поля; в настоящее время эксплуатируются электронно-лучевые установки с ускоряющим напряжением в электронно-лучевой пушке до 200 кВ.

Физическая картина внешних явлений, сопровождающих действие электронов на металл, состоит из рентгеновского излучения, теплоизлучеия, возникновения отраженных, вторичных электронов, испарения металла в виде атомов и ионов металла. Схема данных явлений изображена на рис.3.

Вторичные электроны делятся на три группы: упруго отраженные электроны, энергия которых примерно равна падающим; электроны, отраженные в результате неупругого соударения и имеющие более или менее большие потери; собственно вторичные электроны, энергия которых не превышает 50 эВ.

Рис.3 Фйзическая картина явлений, сопровождающих проникновение электронов в веществе:

1 - атомы металла,

3 - пучок электронов,

4 -рентгеновское излучение,

5 - отраженные и вторичные электроны,

6 - тепловое и световое излучение

Характерные значения параметров сварочных электронных лучей:

Минимальный радиус пучков 0,1... 1 мм;

Электронный луч

Electron Beam

Электронный луч

Пучок электронов, движущийся в одном направлении с одинаковой скоростью.


Толковый англо-русский словарь по нанотехнологии. - М. . В.В.Арсланов . 2009 .

Смотреть что такое "электронный луч" в других словарях:

    электронный луч - Поток движущихся по близким траекториям электронов, размер поперечного сечения которого мал по сравнению с протяженностью в направлении потока. [ГОСТ 17791 82] электронный луч Совокупность электронов, движущихся по одной траектории. [ …

    Электронный луч - 6. Электронный луч Совокупность электронов, движущихся по одной траектории Источник: ГОСТ 21006 75: Микроскопы электронные. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

    развёртывающий электронный луч - elektroninis skleidimo pluoštas statusas T sritis radioelektronika atitikmenys: angl. scanning electron beam vok. Elektronenabtaststrahl, m rus. развёртывающий электронный луч, m pranc. faisceau électronique balayeur, m …

    релятивистский электронный луч - reliatyvistinis elektronų pluoštas statusas T sritis radioelektronika atitikmenys: angl. relativistic electron beam vok. relativistischer Elektronenstrahl, m rus. релятивистский электронный луч, m pranc. faisceau électronique relativiste, m … Radioelektronikos terminų žodynas

    коэффициент связи через электронный луч - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN beam coupling factor … Справочник технического переводчика

    ЭЛЕКТРОННЫЙ МИКРОСКОП - ЭЛЕКТРОННЫЙ МИКРОСКОП, МИКРОСКОП, который «освещает» изучаемый объект потоком электронов. Вместо обычных линз в нем имеются магниты, фокусирующие электронный пучок. Это устройство позволяет разглядеть предметы очень малых размеров, потому что… … Научно-технический энциклопедический словарь

    Луч электронный - Электронный луч группа ускоренных электронов, движущихся приблизительно в одном направлении... Источник: ГОСТ Р 50014.7 92 (МЭК 519 7 83). Государственный стандарт Российской Федерации. Безопасность электротермического оборудования. Часть 7.… … Официальная терминология

    Луч - Содержание 1 Наука 2 Предприятия 3 Спортивные клубы … Википедия

    ЭЛЕКТРОННЫЙ МИКРОСКОП - вакуумный электронно оптич. прибор для наблюдения и фотографирования многократно увеличенного (до 106 раз) изображения объектов, полученного с помощью пучка электронов, ускоренных до больших энергий (30 100 кэВ и более). Для фокусировки… … Большой энциклопедический политехнический словарь

    электронный микроскоп - электронно оптический прибор, в котором для наблюдения и фотографирования многократно увеличенного (до 106 раз) изображения объектов используется пучок электронов, ускоренных до больших энергий в условиях глубокого вакуума. При этом используются… … Энциклопедия техники

Книги

  • , Кэтрин Рипли. О чем эта книга У детей всегда есть вопросы. Много вопросов. И большинство из них начинаются с одного-единственного слова - `Почему?`. Почему мы зеваем? Почему у кошекглаза светятся в…

Электронный пучок –это направленный поток электронов. Можно, например, получить электронный пучок из электронной лампы. Для этого необходимо сделать в аноде отверстие. Часть электронов ускоренных электрическим полем будут попадать в это отверстие и создавать за анодом электронный пучок. Причем мы сожжем даже управлять количеством электронов в этом пучке. Для этого надо будет поставить между катодом и анодом дополнительный электрод, потенциал которого мы будем изменять.

Основные свойства электронного пучка

  • При попадании пучка электронов на поверхность какого-либо тела, он будет вызывать нагревание этого тела.Это свойство электронных пучков широко используется для электронной плавки сверхчистых металлов.
  • Получение рентгеновского излучения, которое будет возникать приторможении быстрых электронов. Это свойство широко используется в рентгеновских трубах и аппаратах, сделанных на их основе.
  • При попадании пучка электронов на некоторые вещества, например, стекло, они начинают светиться. Этиматериалы получили название люминофоров.
  • Электронные пучки будут отклоняться электрическим полем. Если, например, мы пустим пучок электронов между пластинами конденсатора, электроны будут отклоняться от отрицательно заряженной пластины.
  • Электронный пучок отклоняется под действием магнитного поля. Если пустить пучок электронов над северным полюсом магнита, то он отклонится в левую сторону, а если над южным – в правую сторону. Именно поэтому полярное сияние можно наблюдать толькоу полюсов Земли.

Последние три свойства электронного пучка нашли применение в электронно-лучевой трубке.

Электронно-лучевая трубка

Общий вид и устройство электронно-лучевой трубки представлены на следующем рисунке:

картинка

В узком краю ЭЛТ расположена электронная пушка. Она состоит из катода и анода и является источником пучка электронов. В электронной пушке пучок электронов разгоняется до нужной скорости. Помимо этого, в электронной трубке пучок электронов фокусируется таким образом, чтобы площадь его поперечного сечения была почти точечных размеров.

После того, как пучок вылетает из электронной пушки он последовательно проходит через две пары управляющих пластин. Они способствуют изменению направления пучка. Если на них нет разности потенциалов, то пучок будет направлен в середину экрана. Если мы подадим напряжение на вертикально расположенные пластины, пучок сместится в горизонтальном направлении на некоторый угол. Если мы подадим напряжение на горизонтально расположенные пластины, соответственно, пучок сместится в вертикальном направлении. Таким образом, используя две пары пластин, мы можем добиться смещение луча в любую точку экрана.

Используемая как для передачи, так и для приема электронно-лучевая трубка снабжена устройством, испускающим электронный луч, а также устройствами, обеспечивающими управление его интенсивностью, фокусировку и отклонение. Здесь рассказывается обо всех этих операциях. В заключение профессор Радиоль заглядывает в будущее телевидения.

Итак, мой любезный Незнайкин, я должен объяснить тебе устройство и принципы работы электронно-лучевой трубки, так как она применяется в телевизионных передатчиках и приемниках.

Электронно-лучевая трубка существовала задолго до появления телевидения. Она использовалась в осциллографах - измерительных приборах, позволяющих наглядно увидеть формы электрических напряжений.

Электронная пушка

Электронно-лучевая трубка имеет катод обычно с косвенным накалом, который испускает электроны (рис. 176). Последние притягиваются анодом, имеющим положительный относительно катода потенциал. Интенсивностью потока электронов управляет потенциал другого электрода, установленного между катодом и анодом. Этот электрод носит название модулятора, имеет форму цилиндра, частично охватывающего катод, а в его дне есть отверстие, через которое проходят электроны.

Рис. 176. Пушка электронно-лучевой трубки, испускающая пучок электронов. Я - нить накала; К - катод; М - модулятор; А - анод.

Я чувствую, что ты сейчас испытываешь определенное недовольство мною. "Почему он не сказал мне, что это просто-напросто триод?!" - возможно, думаешь ты. На самом деле, модулятор играет ту же самую роль, что и сетка в триоде. А все эти три электрода вместе образуют электршпую пушку. Почему? Стреляет она чем-нибудь? Да. В аноде проделано отверстие, через которое пролетает значительная часть притягиваемых анодом электронов.

В передатчике электронный луч «просматривает» различные элементы изображения, пробегая по светочувствительной поверхности, на которую проецируется это изображение. В приемнике луч создает изображение на флуоресцирующем экране.

Чуть позже мы более подробно рассмотрим эти функции. А сейчас я должен изложить тебе две основные проблемы: как концентрируется луч электронов и как заставляют его отклоняться, чтобы обеспечить просмотр всех элементов изображения.

Способы фокусировки

Фокусировка необходима для того, чтобы сечение луча в месте его соприкосновения с экраном не превышало размеров элемента изображения. Луч в этой точке соприкосновения обычно называют пятном.

Для того чтобы пятно было достаточно малым, луч нужно пропустить через электронную линзу. Так называют устройство, использующее электрические или магнитные поля и воздействующее на электронный луч так же, как двояковыпуклая стеклянная линза на световые лучи.

Рис. 177. Благодаря воздействию нескольких анодов электронный луч фокусируется в одну точку на экране.

Рис. 178. Фокусировка электронного луча обеспечивается магнитным полем, создаваемым катушкой, к которой приложено постоянное напряжение.

Рис. 179. Отклонение электронного луча переменным полем.

Рис. 180. Две пары пластин позволяют отклонять электронный луч в вертикальном и горизонтальном направлениях.

Рис. 181. Синусоида на экране электронного осциллографа, в котором на горизонтальные отклоняющие пластины приложено переменное напряжение, а на вертикальные пластины - линейное напряжение такой же частоты.

Фокусировка осуществляется электрическими силовыми линиями, для чего за первым анодом устанавливают второй (также снабженный отверстием), на который подают более высокий потенциал. Можно также установить за вторым анодом третий и подать на него еще более высокий потенциал, чем на второй. Разность потенциалов между анодами, через которые проходит электронный луч, воздействует на электроны наподобие электрических силовых линий, идущих от одного анода к другому. И это воздействие имеет тенденцию направить к оси луча все электроны, траектория которых отклонилась (рис. 177).

Потенциалы анодов в используемых в телевидении электронно-лучевых трубках часто достигают нескольких десятков тысяч вольт. Величина же анодных токов, наоборот, очень небольшая.

Из сказанного ты должен понять, что мощность, какую нужно отдать в трубке, не представляет собой ничего сверхъестественного.

Сфокусировать луч можно также воздействием на поток электронов магнитным полем, создаваемым протекающим по катушке током (рис. 178).

Отклонение электрическими полями

Итак, нам удалось настолько сфокусировать луч, что его пятно на экране имеет крохотные размеры. Однако неподвижное пятно в центре экрана не дает никакой практической пользы. Нужно заставить пятно пробегать по чередующимся строкам обоих полукадров, как это объяснил тебе Любознайкин во время вашей последней беседы.

Как обеспечить отклонение пятна, во-первых, по горизонтали, чтобы оно быстро пробегало по строкам, и, во-вторых, по вертикали, чтобы пятно переходило с одной нечетной строки на следующую нечетную или же с одной четной на следующую четную? Кроме того, нужно обеспечить очень быстрый возврат с конца одной строки к началу той, которую пятну предстоит пробежать. Когда же пятно закончит последнюю строку одного полукадра, оно должно очень быстро подняться кверху и занять исходное положение в начале первой строки следующего полукадра.

В этом случае отклонение электронного луча может также осуществляться изменением электрических или магнитных полей. Позднее ты узнаешь, какую форму должны иметь управляющие разверткой напряжения или токи и как их получить. А сейчас посмотрим, как устроены трубки, отклонение в которых осуществляется электрическими полями.

Эти поля создают путем приложения разности потенциалов между двумя металлическими пластинами, расположенными по одну и другую сторону от луча. Можно сказать, что пластины представляют собой обкладки конденсатора. Ставшая положительной обкладка притягивает электроны, а ставшая отрицательной - их отталкивает (рис. 179).

Ты легко поймешь, что две расположенные горизонтально пластины определяют отклонение электронного луча но вертикали. Для перемещения луча по горизонтали нужно использовать две пластины, расположенные вертикально (рис. 180).

В осциллографах как раз и используют этот способ отклонения; там устанавливают как горизонтальные, так и вертикальные пластины. На первые подают периодические напряжения, форму которых мужно определить, - эти напряжения отклоняют пятно по вертикали. На вертикальные пластины подают напряжение, отклоняющее пятно по горизонтали с постоянной скоростью и почти мгновенно возвращающее его к началу строки.

При этом появляющаяся на экране кривая отображает форму изменения изучаемого напряжения. По мере перемещения пятна слева направо рассматриваемое напряжение заставляет его подниматься или опускаться в зависимости от своих мгновенных значений. Если ты будешь таким образом рассматривать напряжение сети переменного тока, то на экране электронно-лучевой трубки увидишь красивую синусоидальную кривую (рис. 181).

Флуоресценция экрана

А теперь пора тебе объяснить, что экран электронно-лучевой трубки изнутри покрыт слоем флуоресцентного вещества. Так называют вещество, которое под воздействием ударов электронов светится. Чем мощнее эти удары, тем выше вызываемая ими яркость.

Не путай флуоресценцию с фосфоресценцией. Последняя присуща веществу, которое под воздействием дневного света или света электрических ламп само становится светящимся. Именно так светятся ночью стрелки твоего будильника.

Телевизоры оснащают электронно-лучевыми трубками, экран которых сделан из полупрозрачного флуоресцентного слоя. Под воздействием электронных лучей этот слой становится светящимся. В черно-белых телевизорах производимый таким образом свет - белый. Что же касается цветных телевизоров, то в них флуоресцентный слой состоит из 1500000 элементов, одна треть которых излучает красный свет, другая треть светится синим светом, а последняя треть - зеленым.

Рис. 182. Под воздействием магнитного поля магнита (тонкие стрелки) электроны отклоняются в перпендикулярном ему направлении (толстые стрелки).

Рис. 183. Катушки, создающие магнитные поля, обеспечивают отклонение электронного луча.

Рис. 184. По мере увеличения угла отклонения трубку делают короче.

Рис. 185. Размещение проводящего слоя, необходимого для отвода с экрана во внешнюю цепь первичных и вторичных электронов.

Позднее тебе объяснят, как комбинации этих трех цветов позволяют получить всю гамму самых разнообразных цветов, в том числе и белый свет.

Магнитное отклонение

Вернемся к проблеме отклонения электронного луча. Я описал тебе способ, основанный на изменении электрических полей. В настоящее время в телевизионных электронно-лучевых трубках используется отклонение луча магнитными полями. Эти поля создают электромагниты, расположенные вне трубки.

Напомню, что магнитные силовые линии стремятся отклонить электроны в направлении, которое образует с ними прямой угол. Следовательно, если полюсы намагничивания расположены слева и справа от электронного луча, то силовые линии идут в горизонтальном направлении и отклоняют электроны сверху вниз.

А полюсы, расположенные сверху и снизу от трубки, смещают электронный луч по горизонтали (рис. 182). Пропуская по таким магнитам переменные токи соответствующей формы, заставляют луч совершать требующийся путь полной развертки изображений.

Итак, как ты видишь, электронно-лучевая трубка окружена немалым количеством катушек. Вокруг нее находится соленоид, обеспечивающий фокусировку электронного луча. А отклонением этого луча управляют две пары катушек: в одной витки расположены в горизонтальной плоскости, а в другой - в вертикальной, Первая пара катушек отклоняет электроны справа налево, вторая -г вверх и вниз (рис. 183).

Угол отклонения луча от оси трубки раньше не превышал , полное же отклонение луча составляло 90°. В наши дни изготовляют трубки с полным отклонением луча до 110°. Благодаря этому длина трубки уменьшилась, что позволило изготовить телевизоры меньшего объема, так как глубина их футляра уменьшилась (рис. 184).

Возвращение электронов

Ты, может быть, спрашиваешь себя, каков конечный путь электронов, ударившихся о флуоресцентный слой экрана. Так знай, что этот путь заканчивается ударом, вызывающим испускание вторичных электронов. Совершенно недопустимо, чтобы экран накапливал первичные и вторичные электроны, так как их масса создала бы отрицательный заряд, когорый стал бы отталкивать другие излучаемые электронной пушкой электроны.

Для предотвращения такого накопления электронов внешние стенки колбы от экрана до анода покрывают проводящим слоем. Таким образом, приходящие на флуоресцентный слой электроны притягиваются анодом, имеющим очень высокий положительный потенциал, и поглощаются (рис. 185).

Контакт анода выводят на боковую стенку трубки, тогда как все другие электроды соединяют со штырьками цоколя, расположенного на противоположном относительно экрана конце трубки.

Существует ли опасность взрыва?

Еще один вопрос, несомненно, рождается в твоем мозгу. Ты, должно быть, спрашиваешь себя, с какой силой атмосфера давит на эти большие вакуумные трубки, устанавливаемые в телевизорах. Ты знаешь, что на уровне земной поверхности атмосферное давление составляет около . Площадь же экрана, диагональ которого равна 61 см, составляет . Это означает, что воздух давит на этот экран с силой . Если учесть остальную часть поверхности колбы в ее конической и цилиндрической частях, то можно сказать, что трубка выдерживает общее давление, превышающее 39-103 Н.

Выпуклые участки трубки легче, чем плоские, выдерживают высокое давление. Поэтому раньше трубки изготовляли с весьма выпуклым экраном. В наши дни научились делать экраны достаточно прочными, чтобы даже при плоской форме они успешно выдерживали давление воздуха. Поэтому риск взрыва, направленного внутрь, исключен. Я умышленно сказал взрыва, направленного внутрь, а не просто взрыва, так как если разрывается электронно-лучевая трубка, то ее осколки устремляются внутрь.

В старых телевизорах из предосторожности перед экраном устанавливали толстое защитное стекло. В настоящее время обходятся без него.

Плоский экран будущего

Ты молод, Незнайкин. Перед тобой открывается будущее; ты увидишь эволюцию и прогресс электроники во всех областях. В телевидении, несомненно, наступит такой день, когда электронно-лучевая трубка в телевизоре будет заменена плоским экраном. Такой экран будут вешать на стену как простую картину. А все схемы электрической части телевизора благодаря микроминиатюризации будут размещены в раме этой картины.

Использование интегральных схем даст возможность до минимума сократить размер многочисленных схем, составляющих электрическую часть телевизора. Применение интегральных схем уже получило широкое распространение.

И наконец, если все ручки и кнопки управления телевизором придется размещать на окружающей экран раме, то наиболее вероятно, что для регулировки телевизора будут применяться дистанционные устройства управления. Не поднимаясь со своего кресла, телезритель сможет переключать телевизор с одной программы на другую, изменять яркость и контрастность изображения и громкость звукового сопровождения. Для этой цели у него под рукой будет маленькая коробочка, излучающая электромагнитные волны или ультразвуки, которые заставят телевизор произвести все заданные переключения и регулировки. Впрочем, такие устройства уже существуют, но пока не получили широкого распространения...

А теперь вернемся из будущего в настоящее. Я предоставляю Любознайкину возможность объяснить тебе, как электронно-лучевые трубки в настоящее время используются для передачи и приема телевизионных изображений.

· Электронные пучки. Под электронными пучками понимают направленные потоки электронов, поперечные размеры которых значительно меньше их длины. Электронные пучки впервые были обнаружены в газовомразряде, происходящем при пониженном давлении.

При тлеющем разряде положительными ионами с катода выбивается большое число электронов. Если разряд происходит в трубке при очень больших разрежениях, то средняя длина свободного пробега электронов увеличивается и катодное темное пространство расширяется. Электроны, выбитые с катода положительными ионами, движутся почти без столкновений и образуют катодные лучи. Эти лучираспространяются нормально к поверхности катода. Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в отверстие, образуя за анодом электронный пучок.

· Свойства и применение электронных пучков. Электронные пучки вызывают свечение(флуоресценцию) некоторых веществ. К ним относятся стекло, сульфиды цинка, кадмия и др. Эти вещества называются люминофо-рами. Это свойство электронных пучков применяется в вакуумной электро-нике – свечение экранов телевизоров, осциллографов, электронно-оптических преобразователей и др. Попадая на тела, электронные пучки вызывают их нагревание. Это свойство пользуется для сварки сверхчистых металлов в вакууме.

Электронные пучки отклоняются в электрическом и магнитном полях. Возможность управления электронным пучком с помощью электрического и магнитного поля и свечение экранов, покрытых люминофором под действием электронных пучков, используют в электронно-лучевых трубках.

· Электронно-лучевая трубка. Устройство электронно-лучевой трубки показано на рис. 12.4.1. Она представляет собой стеклянный вакуумный баллон L , в котором находится «электронная пушка», состоящая из накаленного катода К , эмитирующего электроны, и анода с диафрагмой (чаще нескольких анодов, расположенныхдруг за другом) D 1 , D 2 . Между катодом и анодом создают разность потенциалов U , позволяющую разогнать электроны до большой скорости и получить узкий пучок. В месте попадания электронного пучка на экран Е , покрытый флуоресцирующим составом, возникает яркая светящаяся точка.

Управление пучком электронов производится двумя парами пластин С 1 и С 2 расположенных перпендикулярно друг другу. Поле пластин С 1 смещает луч в горизонтальном направлении, поле пластин С 2 - в вертикальном. На пластины С 1 и С 2 можно подавать либо постоянное, либо переменное напря­жение. В зависимости от этого светящееся пятно на экране будет либо оставаться на месте, либо перемещаться, образуя прямую, синусоиду и т. д. На этом свойстве основано устройство осциллографа. В более сложных случаях на экране можно получить чередование темных и светлых пятен, которые дают изображение предметов. Такое явление мы наблюдаем в электронно-лучевой трубке телевизора.

Вопросы для повторения:

1. В чем состоит ионизация газа и рекомбинация ионов в газе?

2. Что такое газовый разряд?

3. В чем заключается разница между самостоятельным и несамостоя-тельным газовыми разрядами?

4. Что представляют собой дуговой и тлеющий разряды?

5. Что такое плазма? Какими свойствами она обладает?

6. Что такое диод, как он устроен и почему может работать выпрямителем переменного тока?

7. Что такое электронные пучки, какими свойствами обладают, где применяются?

8. Приведите примеры применения тлеющего разряда в технике.

9. Приведите примеры практического применения плазмы.

10. Опишите механизм образования электронно-ионных лавин.

Резюме:

В процессе изучения темы мы ознакомились со свойствами газовых разрядов и протеканием электрического тока в газах и вакууме.

Приложение

Приложение N 1.

Распределение электронов и дырок описывается функцией Ферми–Дирака.

,

где f Ф-Д (Е ) – вероятность того, что энергетическое состояние занято и может колебаться от 0 до 1 ,

E F – уровень Ферми, часто называемый энергией Ферми или электрохи-мическим потенциалом.


Согласно принципу Паули каждое квантовое состояние может быть заня-то только одним электро-ном. При большем их числе, при абсолютном нуле температур все состояния ниже E F заполнены:

f Ф-Д (Е ) = 1 , а выше E F – свободны от электронов и f Ф-Д (Е ) = 0 . Так как при Т = 0ºК электроны проводимости обладают ненулевой энергией, но распределены по всем разрешенным состояниям от 0 до E F (эВ) то

.

Уровень Ферми в собственном полупроводнике определяется уравнением:

Плотность состояний g(E)

Число состояний на единичный энергетический интервал в единице объема полупроводника как функция энергии.

В двух прилегающих друг к другу фазах электронное равновесие до-стигается при равенстве уровней Ферми. -

Приложение N 2.

Для определения вида функции φ(х) мы воспользовались известным из электростатики уравнением Пуассона, связывающим потенциал поля U(x) с объемной плотностью ρ(х) неподвижных зарядов, создающих это поле.

Это уравнение имеет вид:

принимаем ρ(х) = qNd


Глоссарий

Аморфные вещества С термодинамической точки зрения аморфное ТТ находится в метастабильном состоянии и со временем должно закристаллизоваться. Аморфные вещества ведут себя как жидкости с аномально высокой вязкостью. К ним относятся стекла, пластмассы и смолы, При повышении температуры они постепенно размягчаются и приобретают способность течь, как жидкости [§1.1].
Анизотропия Неодинаковость свойств кристалла в разных направлениях, которая является результатом его симметрии и внутреннего строения[§1.1].
Акцепторные уровни Примеси, захватывающие электроны из валентной зоны полупровод-ника, называют акцепторными акцепторными уровнями. Полупроводники, содержащие такие примеси, называются дырочными полупроводниками, или полупроводниками p -типа;часто их называютакцепторными полупроводниками . [§ 3.6.1].
Адсорбционный слой См. [§ 4.2.2].
Барьерная емкость При обратном напряжении, приложенном к p -n переходу, носители заря-дов обоих знаков находятся по обе стороны перехода, а в области самого перехода их очень мало. Таким образом, в режиме обратного напряжения p -n переход представляет собой емкость. Эту емкость называют барьерной (С б) . [§ 8.5].
Ван-дер-ваальсовские связи Силы взаимодействия в таких кристаллах определяются наличием у молекул естественных или индуцированных электрических моментов [§ 1.3].
Валентная зона При сближении атомов на растояние примерно 10 –8 см.,будет происходить перекрытие волновых функций атомарных электронов. Благодаря этому энергетический уровень валентных электронов превращается в зону.Эта зона носит название валентной [§ 2.1].
Водородная связь В кристаллах с водородными связями каждый атом водорода связан силами притяжения одновременно с двумя другими атомами. Водородная связь вместе с электростатическим притяжением дипольных моментов молекул воды определяет свойства воды и льда[§1.1].
Вольтамперная характеристика p-n перехода См. [§8.4].
Время жизни носителей Среднее время существования носителей заряда в полупроводнике обычно называют временем жизни носителей [ § 3.8].
Вырожденный газ В вырожденном газе в формировании электропроводности могут участвовать не все свобод-ные электроны, а лишь те из них, которые располагаются непосредственно у уровня Ферми.[§ 5.2.2].
Генерация носителей заряда Генерация носителей заряда (образование свободных электронов и дырок) происходит при воздействии теплового хаотического воздействия атомов кристаллической решетки (тепловая генерация), при воздействии поглощенных полупроводником квантов света (световая генерация) и других энергетических факторов [§ 3.4].
Гетеропереход Гетеропереходом называют переход, образующийся на границе контакта двух полупроводников с различной шириной запрещенной зоны. [§ 9.3].
Дефекты в кристалле Нрушения периодичности решетки, которые не сводятся к тепловым движениям, называются дефектами [§ 1.7].
Дефекты по Шоттки В реальных кристаллах некоторые узлы кри-сталлической решетки, в которых должны находиться атомы, оказываются незанятыми [§ 1.7].
Дефекты по Френкелю Они возникают в том случае, когда атом покидает свое место в узле кристаллической решетки и размещается в междоузлии в окружении атомов, расположенных на своих законных местах [§ 1.7].
Дислокации Этот вид дефектов возникает в случае, когда между атомными плоскостями вклинивается неполная дополнительная атомная плоскость [§ 1.7].
Дырка Вакантное место в ковалентной связи получило название дырки. Незавершенная связь будет иметь избыточный положительный заряд равный по величине заряду электрона [§ 3.2].
Донорные уровни Примеси, являющиеся источником электронов проводимости, называютсядонорами , а энергетические уровни этих примесей – донорными уровнями. Полупроводники, содержащие донорную примесь, называются электронными полупроводниками, или полупроводниками п -типа;часто их называют такжедонорными полупроводниками [§3.6.1].
Дрейфовый ток Ток, обусловленный внешним электрическим полем, получил название дрейфового тока. [ § 3.8].
Диффузионный ток Ток, возникающий в результате диффузии носителей из области, где их концентрация повышена, в направлении области с более низкой концентрацией, называется диффузионным бездрейфовым током . [ § 3.8].
Диффузионная длина Среднее расстояние, которое проходят за время жизни носители, называют диффузионной длиной носителей заряда. .
Двойной электрический слой Совокупность положительных ионов у поверхности металла и электронов, появляющихся над поверхностью, называется двойным элект-рическим слоем. .
Запрещенная зона Зоны дозволенных энергий отделены друг от друга интервалом, называемым запрещенной зоной или энергетической щелью [§ 2.1].
Зона проводимости Если же в самой верхней занятой, но не полной зоне, имеются свободные энергетические уровни, на которые могут переходить электроны, то они образуют так называемую зону проводимости [§ 2.1].
Ионные кристаллы Ионные кристаллы (NaСl, KC1 и др.) характерны тем, что силы притяжения, действующие между ионами - электростатические. [§1.1].
Индексы Миллеры В ристаллографии принято пользоваться для обозначения плоскостей особыми индексами Миллера. [ § 1.6].
Инжекционный лазер См.[§10.6].
Инверсия населенностей Инверсия населенностей – соотношение между населенностями разных энергетических уровней атомов или молекул вещества, при котором число частиц на верхнем из данной пары уровней больше, чем на нижнем. [§10.5].
Кристалл Кристалл, представляет собой совокупность атомов, упорядоченно расположенных в пространстве и удерживаемых около положения равновесия силами взаимодействия. Структурными единицами ТТ служат атомы, молекулы или ионы. Термодинамически устойчивыми ТТ являются кристаллические, так как они обладают минимальной внутренней энергией, с повышением температуры, по достижении определенной температуры, называемой температурой плавления, они скачкомпереходят в жидкое состояние. Кристалл имеет прерывистую периодическую структуру. [§1.1].
Ковалентный кристалл В ковалентных кристаллах (алмаз, Ge, Si и др.) валентные электроны соседних атомов обобществлены, поэтому ковалентный кристалл можно рассматривать как одну огромную молекулу [§1.1].
Класс симметрии В кристаллографии показано, что существуют всего 32 возможные комбинации элементов симметрии. Каждая из таких возможных комбинаций называется классом симметрии. В природе существуют только кристаллы, относящиеся к одному из 32 классов симметрии [§ 1.3].
Коэффициент Холла См.[§ 6.1.1].
Контактная разность потенциалов См. [§ 7.1.1].
Когерентность Когерентность – согласованное протекание во времени нескольких колебательных или волновых процессов. Т.е. если разность фаз двух колебаний остается постоянной во времени, или же два идеальных монохроматических колебания имеют одну и ту же частоту, то такие колебания называются когерентными. [§10.5].
Лазеры Вынужденное когерентное излучение называют стимулированным или индуцированным, а излучатели таких волн получили название лазеров (от английского Light Amplification by Stimulated Emission of Radiation – усиление света за счет индуцированного излучения). [§10.4].
Металлическая связь В металлических кристаллах связь (металлическая связь) обуслов-лена коллективным взаимодействием подвижных электронов с остовом кристаллической решетки. Для переходных металлов характерна также ковалентная связь, осуществляемая электронами незаполненных внутренних оболочек [§1.1].
Молекулярные кристаллы В молекулярных кристаллах молекулы связаны между собой относительно слабыми электростатическими силами (ван-дер-ваальсовы силы) обусловленными динамической поляризацией молекул [§1.1].
Неравновесная концентрация Если с помощью какого либо внешнего воздействия динамическое равновесие концентраций электронов и дырок в полупроводнике нарушено, то появляется дополнительная неравновесная концентрация носителей заряда. [§3.8].
Невырожденный газ В случае невырожденного газа плотность заполнения зоны проводи-мости электронами на столько небольшая, что они практически никогда не встречаются так близко, что бы их поведение могло ограничиваться принци-пом Паули.[§ 5.2.1, § 5.2.2].
Несамостоятельный газовый разряд Процесс протекания тока через газ называют газовым разрядом. Ток в газе, возникающий при наличии внешнего ионизатора, называется несамостоятельным газовым разрядом.
Ось симметрии Если кристалл обладает осью симметрии (поворотной осью), то он может быть совмещен сам с собой, т.е. приведен в положение неотличимое от исходного, путем поворота на некоторый угол вокруг этой оси. В зависимости от симметрии кристалла величина угла поворота, необходимого для совмещения кристалла с самим собой, может составлять 360, 180, 120, 90, 60 градусов. (2п / п, где n = 1, 2, 3, 4 или 6) [§ 1.3].
Основные носители Электроны, составляющие подавляющее большинство носителей заряда в полупроводниках п -типа, называют основными носителями заряда, а дырки – неосновными.. И на оборот, дырки составляющие подавляющее большинство носителей заряда в полупроводниках p -типа, называют основными носителями заряда, а электроны– неосновными. [§ 3.6.2, § 3.6.3].
Омический переход Контакт, электрическое сопротивление которого мало и не зависит от направления тока в заданном рабочем диапазоне токов. [§9.3.3].
Период трансляции Трансляция а представлена вектором, имеющим определенное направление и численное значение, равное а, называемое периодом трансляции [§1.3].
Плоскость симметрии Если одна половина кристалла совмещается с другой при отражении в некоторой плоскости, как в зеркале, то такая плоскость называется плоскостью симметрии [§ 1.3].
Поворотно-зеркальная ось К этому элементу симметрии приводит одновременное применение двух операций: поворота вокруг оси и зеркального отражения в плоскости, перпендикулярной оси [§ 1.3].
Полупроводники Полупроводники, широкий класс веществ с электронным механизмом электропроводности, по её удельному значению sзанимающих про-межуточное положение между металлами (s ~ 10 4 -10 6 Ом -1 см -1) и хорошими диэлектриками (s ~ 10 -12 -10 -11 Ом -1 см -1) (интервалы значений sуказаны при комнатной температуре) [§ 3.1].
Примесный полупроводник Полупроводник, имеющий примеси, называется примесным, а его электропроводность обусловленную наличием в кристалле примесей-примесной [§ 3.6.1].
Полупроводник n-типа См. Донорные уровни. [§ 3.6.1].
Полупроводник p-типа См. Акцепторные уровни [§ 3.6.1].[ § 3.6.3].
Примесная проводимость Проводимость, вызванная присутствием в кристалле полупроводника примесей из атомов с иной валентностью, называется примесной [§ 3.6.2].
Переход Шоттки Выпрямляющий контакт металл – полупро-водник п -типа называют переходом Шоттки. Важнейшей особенностью перехода Шоттки по сравнению с р-п переходом является отсутствие инжекции неосновных носителей заряда . [§9.1].
Поверхностные явления в полупроводниках Физические явления, возникающие у поверхности полупроводникового кристалла вызванные нарушением распределения потенциала кристаллической решетки полупроводника вследствие его обрыва у поверхности; наличием нескомпенсированных валентных связей у поверхностных атомов; искажением потенциала решетки из-за поверхностных атомов; искажением потенциала решетки из-за возможных поверхностных дефектов структуры кристалла. [§9.2].
Поверхностный потенциал Если принять потенциал в объеме полупроводника равным нулю, то потенциал поверхности будет отличен от нуля из-за наличия зарядов между объемом и поверхностью. Разность потен-циалов между поверхностью и объемом называют поверхностным потенциалом [§9.2].
Пробой Туннельный -основан на изученном нами туннельном эффекте – когда электроны проходят через потенциальный барьер р-п- перехода, не изменяя своей энергии.
Лавинный -Механизм лавинного пробоя подобен механизму ударной ионизации в газах. Под действием сильного электрического поля электроны могут освободиться из ковалентных связей и получить энергию, достаточную для преодоления потенциального барьера в р-п- переходе. Двигаясь с большой скоростью в области р-п- перехода они сталкиваются с нейтральными атомами и ионизируют их.
Тепловой -Электрический и тепловой пробой во многих случаях происходят одновременно. Во время электрического пробоя полупроводник разогревается и затем происходит тепловой пробой. Тепловая генерация пар электрон –дырка приводит к увеличению концентрации неосновных носителей заряда и к росту обратного тока, а увеличение тока, приводит в свою очередь к дальнейшему повышению температуры. Процесс нарастает лавинообразно. При чрезмерном разогреве кристалла, р-п- переход необратимовыходит из строя.
Работа выхода Работой выхода называется работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона е на пройденную разность потенциалов φ 0 .[§ 4.2.1].
Рекомбинация носителей заряда Процесс превращения свободного электрона в связанный электрон и исчезновение пары носителей заряда (электрон-дырка) носит название рекомбинации.
Силы взаимодействия Природа сил взаимодействия между атомами в кристаллах хорошо известна. Это – электрические силы отталкивания и притяжения по-ложительно и отрицательно заряженных частиц, имеющихся в каждом атоме. [§1.1].
Сингония В кристаллографии принято объединять 32 класса симметрии в 7 систем симметрии или 7 сингоний, которые носят следующие названия в порядке возрастания симметрии триклинная система, включающая два класса симметрии, тригональная система, объединяющая семь классов, моноклинная система, куда входят три класса, гексагональная система - пять классов, ромбическая, также с тремя классами, тетрагональная система с семью классами, кубическая система [§ 1.3]. [§ 1.3].
Собственный полупроводник Полупроводник будет являться собственным, если влияние примесей на его свойства пренебрежимо мало. В нем свободные носители заряда возникают только за счет разрыва валентных связей [§ 3.2].
Стимулированное излучение Может воз-никнуть процесс, при котором все возбужденные атомы излучают почти одновременно, взаимосвязано и так, что генерируемые фотоны абсолютно неотличимы от тех, которые эту генерацию вызвали. Такое вынужденное когерентное излучение называют стимулированным или индуцированным [§10.4.].
Термопара См.[§11.2.1].
Термоэлемент См. [§ 11.2.2].
Термоэлектрические явления См. [§10.1.1].
Трансляция Кристалл имеет прерывистую периодическую структуру. С геомет-рической точки зрения такую структуру можно создать с помощью операции параллельного смещения, которая называется трансляцией [§1.3].
Твердое тело Твердым телом (ТТ) называют такое агрегатное состояние вещества, которое характеризуется постоянством формы рассматриваемой макро-системы и особым характером теплового движения атомов, составляющих макросистему. Различают кристаллические и аморфные ТТ. Термодинами-чески устойчивыми ТТ являются кристаллические, так как они обладают минимальной внутренней энергией[§1.1].
Трансляционная группа Положение любой точки в пространственной решетке определяться комбинацией перемещений ma+nb+pc. Комбинация трех векторов а,b,с называется трансляционной группой [§1.3].
Тепловой пробой p-n перехода Тепловой пробойp-nперехода происходит вследствие вырывания ва-лентных электронов из связей в атомах при тепловых колебаниях кристалли-ческой решетки. Тепловая генерация пар электрон-дырка приводит к увели-чению концентрации не-основных носителей заряда и к росту обратного тока. [§8.4].
Туннельный эффект Туннельный эффект заключается в том, что электроны проходят через потенциальный барьер p-n перехода, не изменяя своей энергии. [§8.6].
Фотопроводимость полупроводников Явлением фотопроводимости называется увеличение электропроводности полупроводника под воздействием электромагнитного излучения. [§ 10.1].
Фоторезистивный эффект Сущность этого явления состоит в том, что при поглощении квантов света с энергией достаточной для ионизации собственных атомов полупроводника или ионизации примесей, происходит увеличение концентрации носителей заряда. [§10.2].
Центр симметрии Если в кристалле существует точка, обладающая тем свойством, что при замене радиуса-вектора r , любой из частиц, составляющих кристалл на обратный ему вектор -r , кристалл переходит в состояние, неотличимое от исходного, то эта точка называется центром симметрии или центром инверсии [§ 1.3].
Экстракция носителей заряда Для неосновных носителей (дырок в n - области и электронов в р - области) потенциальный барьер в электронно-дырочном переходе отсутствует, и они будут втягиваться полем в области p-n перехода. Это явление называется экстракцией. [§ 8.2].
Элементарная ячейка Параллелепипед, построенный на трех элементарных трансляциях а, в, с, называется элементарным параллелепипедом или элементарной ячейкой.[ §1.3].
Элементы симметрии плоскость симметрии, ось симметрии, центр симметрии, зеркально-поворотная ось симметрии[ §1.3].
Электрохимический потенциал Энергия электрохимического потенциала – работа, которую необходимо затратить для изменения числа частиц в системе на единицу при условии постоянства объема и температуры [§ 3.3].
Электрический пробой p-n перехода Электрический пробой происходит в результате внутренней электростатической эмиссии (зинеровский пробой) и под действием ударной ионизации атомов полупроводника (лавинный пробой). [§ 8.4].
Электронная эмиссия См. [§ 4.2.2].
Электронно –дырочный переход (p-n переход). Переход между материалами с электропроводностью n- и p- типа носит название p-n перехода. [§ 7.2].
Электростатический домен См. Эффект Ганна [§ 5.6].
Энергия Ферми При температуре равной абсолютному нулю Т = 0 К энергия всей атомной системы, в том числе и электронного газа минимальна. Однако при этом наблюдается характерная ситуация, когда электроны, находящиеся на верхних энергетических уровнях, обладают еще достаточно большой энергией, которую они не могут сбросить и перейти на нижние уровни из-за запрета Паули. Энергия электронов, занимающих самый верхний из занятых уровней, обозначается ε макс и называется энергией Ферми [§ 2.1, § 3.3].
Эффективная масса Влияние на движение электрона в поле периодического кристаллического потенциала ионов и остальных электронов приводит к тому, что свойства носителей тока в кристалле (электронов проводимости и дырок) во многом отличается от свойств электронов в свободном пространстве. А их масса (эффективная масса) может сильно отличаться от массы свободного электрона и зависеть от направления движения [§ 3.5].
Эффект Ганна См.[§ 5.6].
Эффект Зиннера См.[§ 5.6].
Эффект Зеебека См. [§ 10.1.1].
Эффект Пельтье См. [§ 10.1.2].
Эффект Томсона См. [§ 10.1.3].
Эффект Холла Явление возникновения в полупроводнике с текущим по нему током поперечного электрического поля под действием магнитного поля называют эффектом Холла. [§ 6.1.1].
Эффект Штарка См.[§ 5.6].